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1
METHODS AND SYSTEMS FOR
ESTABLISHING ACCURATE PHENOTYPE
METRICS

CROSS-REFERENCE

This application claims the benefit of priority U.S. Pro-
visional Application No. 63/419,980 filed Oct. 27, 2022, the
contents of which are incorporated by references in their
entirety.

STATEMENT OF GOVERNMENT INTEREST

The present invention was made by employees of the
United States Department of Homeland Security in the
performance of their official duties.

FIELD

The present disclosure relates systems and method for
determining phenotype metrics and skin tone through com-
puter vision.
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CIELAB colorspace, also referred to as L*a*b*, is a
colorspace defined by the International Commission on
Illumination (abbreviated CIE) in 1976. (Referring to
CIELAB as “Lab” without asterisks should be avoided to
prevent confusion with Hunter Lab). It expresses color as
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three values: L* for perceptual lightness and a* and b* for
the four unique colors of human vision: red, green, blue and
yellow. CIELAB was intended as a perceptually uniform
space, where a given numerical change corresponds to a
similar perceived change in color. While the LAB space is
not truly perceptually uniform, it nevertheless is useful in
industry for detecting small differences in color. See
“CIELBA COLOR SPACE” in wikipedia.org incorporated
by reference in its entirety. Attachment A.

HCL (Hue-Chroma-Luminance) or LCh refers to any of
the many cylindrical colorspace models that are designed to
accord with human perception of color with the three
parameters. L.ch has been adopted by information visualiza-
tion practitioners to present data without the bias implicit in
using varying saturation.[1][2][3] They are, in general,
designed to have characteristics of both cylindrical transla-
tions of the RGB colorspace, such as HSL and HSV, and the
L*a*b* colorspace. See “HCL COLOR SPACE” in wikipe-
dia.org” incorporated by reference in its entirety. Attachment
B.

SUMMARY

Systems and methods for measuring skin tone are dis-
closed. A camera and computer may measure skin tone
health of a face dataset and color quality of a single face
image. The computer and camera may measure skin tone
across wide sample of volunteers, express skin tone in
CIELCH coordinates; and identify the range of observed
lightness, chromaticity, and hue values in the population to
determine a sample set. The computer and camera may be
configured to match the image to a coordinate system of
lightness, chromaticity, and hue in the sample set. If a match
is not possible, the computer may be configured to select a
coordinate closest to the measured lightness, chromaticity,
and hue.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

The drawing figures illustrate one or more implementa-
tions in with the teachings of this disclosure, by way of
example, not by way of limitation. In the figures, like
reference numbers refer to the same or similar elements. It
will be understood that the drawings are not necessarily to
scale.

FIG. 1 shows a DSM III Colormeter by Cortex Technol-
ogy.
FIGS. 2A-2C show Distribution of face area lightness
measures (FALM) from the ground-truth colormeter device
and from images. FIG. 2A shows a distribution of ground-
truth FALMs (L) using the colormeter device. Note the
bi-modal distribution with apparently distinct peaks for each
self-reported race category. FIG. 2B shows a distribution of
L values computed using images in the CE dataset. Note the
significant overlap between L, values for the two race
categories. FIG. 2C. shows a distribution of the range of L,
values observed for each subject in the CE dataset. Note that
L, value range frequently exceeds the L difference between
race categories. Dotted lines in A and B indicate equal error
rate threshold. Triangles mark average within each race
category.

FIGS. 3A-3D show variation in face area lightness mea-
sures (FALMs). FIG. 3A shows distributions of FALMs (L)
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across B and W subjects for each dataset. FIG. 3B shows
equal error rate between FALM distributions for B and W
subjects. FIG. 3C shows a range of intra subject L, for each
dataset. Error bars are standard deviation across subjects.
Note Corrected (Corr.) and Ground-truth (GT) datasets had
only one image per subject so range could not be computed.
FIG. 3D shows Pearson correlation (p) between L, values
from each dataset and the ground-truth colormeter L values.
Error bars are 95% confidence intervals.

FIGS. 4A-4B show a relationship between Fitzpatrick
Skin Type (FST) score and face area lightness measurements
(FALMs). FIG. 4A shows a distribution of self-reported FST
by race. FIG. 4B shows a distribution of FALM (L) values
within each FST category. Note the apparent association
between FST and (L. Horizontal line corresponds to overall
equal error rate (EER) classification threshold. FIG. 4C
shows a distribution of (L) within each FST category by
race. Note relatively smaller relationship between FST and
(Ly and relatively large separation between (L,) distribu-
tions for each race within each FST category. FIG. 4D shows
error rate (ER) values for race classification based on (L,
within each FST category using the overall EER threshold.

FIGS. 5A-5C show model selection and parameter esti-
mation is affected by level of control in phenotype estima-
tion. FIG. 5A shows results of a simulated experiment with
a known relationship whereby a simulated score is a func-
tion of face area lightness measure (FALM), gender, age
(age not shown), and additive noise. Score is not a function
of race. FIG. 5B show a proportion of times each demo-
graphic factor is selected based on model fits to resampled
data FALM from different datasets. Note that the likelihoods
of erroneously selecting race (a type Il error) and excluding
FALM (a type [ error) becomes greater with reduced level of
control in the dataset acquisition conditions. FIG. 5C shows
parameter estimates for each demographic factor included in
models fit to resampled data using different FALM esti-
mates. Red lines denote parameter estimates used to gener-
ate the simulated scores. Note that the parameter estimate for
FALM decreases with reduced level of control while the
parameter estimate for race is increased. Error bars are 95%
bootstrap confidence intervals.

FIG. 6 shows some statistical results of computer-vision
systems that took place at the 2021 Biometric Technology
Rally.

FIG. 7 shows how a schematic of measuring skin tone
using an MdTF.

FIG. 8 shows equations and a graphical representation of
distances in CIELAB colorspace—normalized for human
perception.

FIGS. 9A-9E shows a graphs of skin color for different
ethnicities as function of Hue vs Lightness. FIG. 9A shows
a range of ethnicities. FIG. 9B shows a graph of hue and
lightness skin tone for people that identify as White. FIG. 9C
shows a graph of hue and lightness skin tone for people that
identify as Black or African American. FIG. 9 shows a graph
of hue and lightness skin tone for people that identify as
Black or African American and White with an overlapping
area identified.

FIG. 10 shows hue for various skin tones plotted on a
polar graph.

FIG. 11 shows a graph illustration a relation biometric
system performance.

FIG. 12 shows CIELAB Values for color calibrating
cameras.

FIGS. 13A-E shows comparisons of colorcheckers and
measured values. FIG. 13A shows two CIELAB colors and
their mapping on a hue/lightness graph for skin tone. FIG.
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13B illustrates there is sparse coverage on a Spyder Check
48 colorchecker for various skin tones.

FIG. 13C shows a point that is considered too light for
face skin. FIG. 13D shows that the X-Rite Digital Color
Checker has sparse, incomplete, and uneven coverage for
various skins tones. FIG. 13E shows points outside the
Google Monk Scale. FIG. 13F shows an evenly distributed
color space range from collected face data sets.

FIG. 14 shows a graph comparing RGB v sRGB

FIG. 15 shows a CIELCH for approximately 60%
(CHazzpsm)-

FIG. 16 shows a Measurement-based Skin Tone Color
Scale.

FIG. 17 shows a process flow for creating a data driven
skin tone target.

FIG. 18 shows a process flow to measure skin tone health
of face dataset and color quality of a single face image.

FIG. 19 shows a system for identifying a target user.

FIG. 20 shows an example of an access control device.

FIG. 21 shows a system for identifying a target user.

DETAILED DESCRIPTION
Section 1

With increasing adoption of face recognition systems, it is
important to ensure adequate performance of these technolo-
gies across demographic groups, such as race, age, and
gender. Recently, phenotypes such as skin tone have been
proposed as superior alternatives to traditional race catego-
ries when exploring performance differentials. However,
there is little consensus regarding how to appropriately
measure skin tone in evaluations of biometric performance
or in Al more broadly. Biometric researchers have estimated
skin tone, most notably focusing on face area lightness
measures (FALMs) using automated color analysis or Fitz-
patrick Skin Types (FST). These estimates have generally
been based on the same images used to assess biometric
performance, which are often collected using unknown and
varied devices, at unknown and varied times, and under
unknown and varied environmental conditions. In this study,
we explore the relationship between FALMs estimated from
images and ground-truth skin readings collected using a
colormeter device specifically designed to measure human
skin. FALMs estimated from different images of the same
individual varied significantly relative to ground-truth
FALMs. This variation was only reduced by greater control
of'acquisition (camera, background, and environmental con-
ditions). Ground-truth FALMs to FST categories obtained
using the standard, in-person, medical survey are compared.
Research revealed that there was relatively little change in
ground-truth FALMs across different FST category and that
FST correlated more with self-reported race than with
ground-truth FALMs. These findings show FST is poorly
predictive of skin tone and should not be used as such in
evaluations of computer vision applications. Models are
generated to show that noisy FALM estimates can lead to
erroneous selection of race as a key correlate of biometric
performance when face recognition performance is driven
by FALMs and independent of race. These results demon-
strate that measures of skin type for biometric performance
evaluations must come from objective, characterized, and
controlled sources. Further, despite this being a currently
practiced approach, estimating FST categories and FALLMs
from uncontrolled imagery does not provide an appropriate
measure of skin tone.
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Biometric technologies are increasingly being adopted for
use as a means of asserting identity in banking, medicine,
travel, and a variety of government applications. As reliance
on biometrics increases, it is important to demonstrate that
these technologies are not only accurate, but also fair, i.e.,
that they are consistently accurate for different groups of
people. Many factors can contribute to differences in accu-
racy across groups, such as algorithm architecture, training
image properties, biometric properties, training set compo-
sition, test image properties, and individual behavior[1].
Thus, it is important to test candidate biometric systems to
quantify any differences between groups to help determine
whether they are fair. However, the process of dividing
individuals into different categories or groups for evaluation
can be problematic.

Face recognition is a type of biometric that can identify a
human individual by using the unique physiological features
of their face. Previous studies of fairness in face recognition
have divided individuals into demographic groups including
gender and race [2], [3], [4]. However, grouping individuals
based on social categories has several drawbacks. First,
social categories evolve over time, causing some individuals
to shift group membership and causing some groups to
disappear altogether. Second, different regions can have
different social categories and social category definitions.
Finally, social category definition sets are not guaranteed to
reflect the range of variation of face physiological features
in a population [5]. For these reasons, recent studies have
proposed relating performance to phenotypic measures as a
more scientifically useful analysis of algorithm fairness [6],
[7]. Phenotypes are observable characteristics of a person
and as such may offer better explanations of any observed
biometric performance variation. However, techniques for
assigning phenotypes to individuals are currently understud-
ied. In [7], images were taken from government websites of
three African countries and three European countries and
manually assigned a numerical value inspired by the Fitz-
patrick Skin Type (FST) categories. Since then, FST has
been proposed as a measurement of relevance in additional
face biometric studies [8], [9], [10], studies of fairness in
self-driving car algorithms [11], and even proposed as a
common benchmark for detailing the performance charac-
teristics of machine learning algorithms generally [12]. If
FST is to become a consensus measure of relevance in
machine learning more broadly and in fairness studies
specifically, it’s appropriate to scrutinize both its use and the
way in which it has been measured in previous studies. A
good measure of skin type should be 1) consistent and 2)
representative of the underlying phenotype. Unfortunately,
the degree to which skin type measured from images meets
these two criteria has not been well assessed and there are
reasons to question the efficacy of this practice. For example,
face skin lightness in a photograph might be hard to distin-
guish from the amount of light illuminating the face (due to
variation in face pose and ambient illumination when the
photograph was taken) and from variation in camera settings
(e.g., aperture, shutter speed, ISO). Also, in regards to FST,
existing behavioral literature has found humans do not
always accurately determine FST [13], [14], [15], [16].
Finally, the fundamental appropriateness of FST as a skin
type metric has not been explored in the context of computer
science tasks, despite documented concerns from the medi-
cal community as to the effectiveness of the FST measure
[17], [18],[19], [20], [21]. In this application, the term Face
Area Lightness Measures (FALMs) means any technique for
characterizing the intensity of light reflected by human skin
in the facial region, as measured by a sensor (this has been
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called many things in previous studies: lighter/darker-skin
[71, [8], tone [9], [10], [11], reflectance [6], etc.). Methods
for assessing variation in FALMs estimated from images
taken in various environments, at various times, and on
various devices and compare these measures to ground-truth
measurements from a calibrated dermological device,
designed specifically to measure skin lightness are pre-
sented. The suitability of FST as a proxy to FALMs by
comparing ground-truth FALM readings with subjects’ self-
reported FST is explored. Finally, data simulation and mod-
elling to show that poor FALM estimations can result in the
erroneous selection of categorical demographic race as the
significant explanatory cause of performance variation, even
when this variation is primarily driven by FALMs is per-
formed.

Section 11

A) Demographics and Biometric Performance.

Prior studies have examined differences in biometric
performance across demographic groups. For instance, face
recognition algorithms trained on one demographic were
found to perform better on that demographic [22]. Another
study noted that some face datasets used for algorithm
development under-represented people with darker skin and
that gender classification algorithms had poorer perfor-
mance for women with darker-skin [7].

However, it is not clear whether skin tone and race can be
used interchangeably and are equally related to biometric
performance or indeed contribute equally to different mea-
sures of biometric performance. For example, in a dataset
captured during a biometric scenario test that simulated real
world capture conditions on eleven commercial face recog-
nition systems, subjects with lower relative skin reflectance
(darker skin) had lower mated similarity scores than subjects
with high reflectance [6]. Using statistical modelling, [6]
also found skin reflectance, as measured by the same
ground-truth sensor used here (see Section III-D), was a
better predictor of mated score performance than self-
reported race labels. This effect was not uniformly observed
across all eleven cameras, with the effect being “almost
negligible” for the best cameras.

A subsequent study looked at face recognition perfor-
mance on a static dataset, collected with a single camera, in
con-trolled lighting and background conditions [9]. Their
results differ from [6] in that African-American subjects had
lower FNMR (and presumably higher mated scores) than
White subjects. Using “FST” values assigned by a three-
person panel, via image examination, [9] also concludes
these results (and other effects on false match rate) were not
due to skin tone. Interestingly, all three reviewers in [9]
agreed on skin tone assignment in only roughly one-third of
subjects. Finally, in the largest study of its kind to date, [4]
found “[tlhe lowest false negative rates occur in black
faces,” but did not attempt to quantify skin type values from
the images in their dataset. Discrepancies between [4] and
[6], [9] are not entirely surprising as each used different
datasets, algorithms, and race/skin-type labeling practices.
B) Optical Properties of Skin and Skin Type

Measurement of skin optical properties depends on the
degree to which skin reflects, absorbs, scatters, and transmits
incident light [23]. Skin is a heterogeneous surface and is
affected by variable amount of blood irrigation and pig-
mentation. Three layers of skin are visible from the surface:
epidermis, dermis, and variable amounts of subcutaneous
adipose tissue. The living part of the epidermis is the
location of most skin pigmentation, which is caused by
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variable numbers of red/yellow phacomelanin and brown/
black eumelanin. In the dermis, blood, hemoglobin, beta
carotene and bilirubin can absorb light, while the fibrous
structure of the dermis produces scattering. Skin erythema
contributes to skin redness and is related to the dilation of
blood vessels nearest to the surface of the skin [23], [24].

Spectroscopic analysis of skin under controlled condi-
tions allows accurate determination of the constituent chro-
mophores. In clinical practice, spectroscopy is routinely
used to estimate melanin and erythema content using cali-
brated Colormeter devices created for this purpose [24],
[25]. In addition to readings of melanin and erythema, these
devices provide sRGB color that can be converted to the
L*a*b* colorspace where lightness is represented by the L*
parameter [26]. Under well controlled laboratory conditions,
such readings have also been demonstrated as possible using
RGB cameras [27], [28].

C) Fitzpatrick Skin Type Classification

The Fitzpatrick Skin Type (FST) is the most used skin
classification system in dermatology [29]. The FST was
originally designed to classify the UV-sensitivity of indi-
viduals with white skin for determining doses of ultraviolet
A phototherapy, a treatment for dermatitis and other skin
disorders. The original FST instrument was released in 1975
and included four skin types (I-IV). It was updated in 1988,
adding two additional skin types to account for individuals
with darker skin (V-VI) [30].

According to medical literature, there are two ways of
establishing the FST of an individual: self-report or third-
party direct assessment by an expert, both are subjective and
involve recording the subject’s answers to questions about
skin responses to sun exposure. Fitzpatrick Skin Type was
initially described as self-reported only [30]. In later studies,
doctors estimated FST after an in-person inspection [29],
[31]. However, even with access to the physical subject, the
FST system is known to be generally unreliable estimator of
skin pigmentation [17] and FST types are known to be
specifically less reliable for non-White individuals [18],
[19], [20], [21]. Interestingly, physician-assessed FST types
have been demonstrated to correlate with race, but when
FSTs are self-reported, the relationship between FST and
race is not consistent [31], [32], [33]. Indeed, recent work
has pointed out that the FST in medicine, in addition to
measuring skin reactivity to ultraviolet illumination, is now
also sometimes used as a proxy for race, which confounds
the interpretation of the measure [29]. Some medical
researchers have even argued against any subjective assess-
ments of skin type, favoring a more quantitative approach
using calibrated spectrophotometers or digital cameras [28].

In 2018, FST was utilized, for the first time, as a proxy for
darker/lighter-skin in the evaluation of a computer algo-
rithm. That paper discussed the accuracy of gender classi-
fication algorithms across FST groups derived from face
photos [7]. This spurred numerous other computer science
papers where the relationship between FST measures and
performance was measured in domains such as face recog-
nition [8], [9], [10], [16] and pedestrian detection for self-
driving cars [11]. FST has even been proposed as a stan-
dardized method for documenting the performance of a
generic machine learning algorithm [12].

Crucially, the FST measures in [7], [9], and [11] were
deter-mined by third-party assessment of previously
acquired images of individuals. No direct assessment or
self-report was performed as part of these studies, despite
being the documented method of arriving at an FST classi-
fication, as laid out in the medical literature [29], [30], [31].
Additionally, these studies did not attempt to validate that
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their third-party, remote assessments of FST were accurate
representations of actual FST measures and did not address
the well documented concerns of the medical community
with the FST approach to skin color classification [17], [18],
[19], [20], [21]. It is well established that human perception
of face color is known to be affected by race [34] and by the
color of other face features, such as lips [35]. Furthermore,
any accurate assessment of skin type from a photograph may
depend on the camera system and degree to which skin tone
in images is represented reliably. This representation is
affected by pose, ambient lighting, choice of camera, and
likely many more factors. The concerns with third-party
assessment of FST were supported by a 2021 study mea-
sured the consistency of FST ratings across different people
and against automated measures, finding notable variation
and inconsistencies between raters for a single image and
between automated measures from different images of the
same person [16].

Finally, it is important to note that, when using ordinal
scales, like FST, in scientific studies, altering either the
sur-vey instrument or the assigned categories alters the
scale. FST refers to a 6 point scale, where individual options
are related to sun burn and skin sensitivity to UV exposure
(see Section III-E). FST is arrived at my asking specific
questions to the subject in question or by direct physician
examination [21], [31], [33], [36]. Other scales, such as the
TIARPA 1JC-B skin tone descriptions [37], are not described
as FST, despite also being a 6 point scale. This is because
both the categories and the survey instrument are different.
Categories in [37] are determined by Amazon Mechanical
Turk workers (with no access to the physical subject they are
labeling) and are on a scale of increasing skintone darkness.
Using different category labels or a different method for
arriving at these labels are unlikely to produce the same
ratings as the other instruments. When new ordinal scales
are introduced, care must be taken to explain both how this
scale was developed and how it validated against the under-
lying phenomena the scale is measuring.

Section III

L*a*b* colorspace, particularly the L*, or lightness,
component has been proposed a quantitative means for the
communication of skin-color information. It is advantageous
over other colorspace representations because changes in the
L* dimension relate directly to changes in human perception
[26]. In this study we leverage the L*a*b* colorspace, and
refer to different approaches to characterize light reflected
by the skin, from the facial region and measured by a sensor,
as Face Area Lightness Measures (FALMs).

The source of our subject and image data is outlined in
Section III-A. The subject and image data is further arranged
into various datasets that vary by level of control in Section
III-B. FALMs estimated from images in these datasets
(Section III-C) is compared to ground-truth FALMs col-
lected by a calibrated instrument (Section I1I-D) to establish
the consistency and appropriateness of different FALM
techniques. Ground-truth FALMs are also compared to
self-reported FST categories (Section III-E).

A. Sources of Subject and Image Data

Data for this study came from two sources. Fist, the
Maryland Test Facility (MdTF) is a biometrics research lab
affiliated with the U.S. Department of Homeland Security
(DHS) that has been in operation since 2014. As part of
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bio-metric technology evaluations at the MdTF, human
subjects are recruited as test participants from the general
population. In particular, a test in May of 2019, acquired
face photographs from 345 human subjects on nine different
acquisition devices [38]. These photographs (“Acquisition
Images™) were compared to other face photographs that had
been collected for each subject over a period of 1-5 years
preceding the 2019 test (“Historic Images™). Historic images
were collected on a variety of different face biometric
acquisition devices at the MdTF. Acquisition Images from
the nine acquisition devices were also compared to high-
quality face photographs, captured by a trained operator,
using a Logitech C920 webcam (“Enrollment Images”).
Enrollment Images were captured in front of a neutral grey
background in accordance with ISO/IEC 19794-5. All race
information from MdTF subjects was self reported by the
subjects upon study enrollment. Also, as part of [38] ground-
truth measures were taken using a calibrated dermographic
instrument, specifically designed to measure skin (see Sec-
tion III-D).

TABLE I
Images and Subjects Per Source Examined in This Study
Source Race Images Subjects
MEDS Images B 595 184
MEDS Images W 458 229
Historic Images B 1874 181
Historic Images w 1710 164
Acquisition Images B 1458 181
Acquisition Images w 1320 164
Enrollment Images B 181 181
Enrollment Images w 164 164

The second data source of images for this study is Special
Database 32-Multiple Encounter Dataset (“MEDS Images™)
from the U.S. National Institutes of Science and Technology
(NIST). The MEDS dataset consists of mugshot photos from
individuals who have had multiple encounters with law
enforcement [39]. Race information from these subjects is
included as part of the MEDS dataset but was assigned by
a third party, not self reported by the subject. Table I
summarizes the number of subjects and images for each data
source used in this study. In both sources, subjects assigned
or self reported a race other than Black (B) or White (W)
were limited in numbers and thus removed from the analysis
presented in this manuscript.

B. Face Area Lightness Datasets

To study the effect of various controls during the photo-
graphic acquisition process on FALMs, the data described in
Section III-A were arranged into seven distinct datasets.
Each of these datasets afforded different levels of control for
environment, capture time, and device. For each of these
datasets, FALMs were calculated based on the information
available. Table II shows the seven face area lightness
datasets used in this study and the corresponding FALM (L))
equations. Sections III-C and III-D outline the techniques
used to calculate the FALM values for each dataset.

C. FALMs from Images
To assess FALMs from images, pixels falling on the skin
of the face were selected by face finding, circular masking,

and outlier removal using methods adapted from [40] and
previously used by [6]. The sSRGB values of face skin pixels
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were averaged and converted from sRGB to the L*a*b*
colorspace using the D65 illuminant. FALMs (L) were
estimated from the resulting L* channel.

FALMs from the MEDS dataset images came from varied
environment, varied devices, and varied acquisition times.
The CE and CET datasets consist of images collected in the
constant environment of the MdTF, i.e., a single location
with controlled/standard office lighting (600 Lux). The CET
dataset consisted of images collected in a single day, i.e.,
constant time, ruling out any variation in subjects’ actual
skin pigmentation across these images. For images in the
MEDS, CE, and CET datasets there is no way to normalize
L, values further and the FALM for these datasets are
calculated as described in the previous paragraph.

However, the CED and CEDT datasets consist of images
collected at the MdTF that are associated with specific
acquisition devices. Using this information, we controlled
FALM L values for imaging device d to generate controlled
L, values by subtracting the average FALM values within
each device L, and adding the grand average face image
lightness L.

The “Corrected” dataset consists of only Enrollment
Images (see Section I1I-A). In addition to being collected by
a single acquisition device, these images are captured in
front of a neutral grey background. Consequently, they can
be corrected for background image lightness. This correc-
tion was performed by subtracting background lightness L,, ,
from FALM L, and reconstituting with the average differ-
ence between face and background lightness. Table II (rows
i-vi) shows the six datasets of FALM values from images
used in this study.

D. Ground-Truth FALMs from Calibrated Equipment

As part of [38], ground-truth FAL Ms were recorded using
a calibrated hand-held sensor (DSM III Colormeter, Cortex
Technology, FIG. 1). The sensor measures skin color using
an RGB sensor to image a 7 mm2 patch of skin under
standard illumination provided by two white light emitting
diodes. The device can accurately measure the color as well
as erythema and melanin content of skin [25], [41].

For each of the 345 subjects in [38], two bilateral mea-
surements were collected by placing the colormeter on each
subject’s face approximately on the subject’s zygomatic
arch. The two sRGB measurements were collected in close
succession and converted to the L*a*b* colorspace using the
D65 illuminant (L,. and L,.). The subjects’ skin was not
cleaned prior to collection. As such, the colormeter measures
are likely related to subjects’ facultative pigmentation as
well as any contributions from makeup in a manner similar
to subjects’ face images from cameras. The skin contacting
surfaces of the colormeter were wiped with rubbing alcohol
between subjects and the device itself was calibrated twice
a day using a standardized procedure involving a white
calibration plate provided by the colormeter manufacturer.
Ground-truth FALM readings matched skin tone readings
reported in prior work [24], [42] were verified. Colormeter
readings were collected on the same day as the images in the
Enrollment and Acquisition image set and are from the same
test subjects. Images in the Historic image set are also from
these same test subjects, but were collected on days prior to
the day when colormeter readings were taken (see Section
1I-A).
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TABLE II

14

Face Area Lightness Datasets Examined

Face
Area
Lightness
Dataset Image Environment Time Device Measure
(a) Source Based (E) (T) (D) Ly
i MEDS MEDS Yes Varied Varied Varied Ly
ii CE Historic &  Yes Constant Varied Varied Ly
Acquisition
iii CET Acquisition  Yes Constant ~ Constant ~ Varied L,
iv CED Historic &  Yes Constant Varied Controlled Lea—
Acquisition Weg + Ky
v CEDT Acquisition  Yes Constant  Constant Controlled Lea—
Hea +Up
vi Corrected  Enrollment  Yes Constant ~ Constant Constant (Lpa—
Lya) + 2
(Wra =
[IT9P)
vii Ground-  Colormeter  Yes Constant ~ Constant Constant YL, +
Truth L)
TABLE III 2C shows the range of FALM values for each individual in
the CE dataset. These intra-subject FALM values ranged, on
FST Question Response Options 25 average, by 38 units for Black or African American subjects
Option Text FST and by 39 for White subjects, corresponding to more than a
: — 2-fold difference in measured face area lightness, for a single
Highly sensitive, always burns, never tans I subject, from image to image. This variation across images
Very sun sensitive, burns easily, tans I . . . . .
minimally is 3 times larger than the 13 point difference in the average
Sun sensitive to skin, sometimes burns, I 30 FALM of individuals in the two race groups (FIG. 2B).
slowly tans to light brown o B. Control in Image-Based FALMs
Minimally sun sensitive, burns minimally, v If images captured on various devices at various times are
always tans to moderate brown . . .
Sun insensitive skin, rarely burns, tans well v unsuitable for estimating ground-truth FALMs, what level of
Sun insensitive, never burns, deeply VI control must be added to image capture to allow for FALMs

pigmented 35

E. Self-Reported Fitzpatrick Skin Type

Also as part of [38], each subject self-reported their FST
as part of a paper survey. There are several ways to self-
report FST, which vary in question, wording, the number of
questions, and description of FST categories [21], [31], [33],
[36]. The method we selected uses the single-question
measure adapted from [36] because of its simplicity and
because it includes specific descriptors that are more mean-
ingful for darker skin tones. Participants were asked “Which
of the following descriptions best matches your skin type?”
and allowed to select one option from a list that was most
consistent with their experience. Table 111 shows the options
provided and their mapping onto FST skin types, per [36].
Responses were digitized for each test subject.

50

Section IV

A. Variation in Image-Based FALMs

FIG. 2A shows the distribution of ground-truth FALM
values for the 181 Black and 164 White test subjects in the
face data set (Table II, row vii). We note little overlap
between the two distributions and an equal error rate (EER)
of 9.8%, if a simple threshold based classification scheme
were used. Conversely, FALM values estimated from
images where device and acquisition time varies (the CE
dataset) were more broadly distributed (FIG. 2B) such that
the distributions of FALMs between the two race categories
overlapped to a greater extent (EER=32.2%).

This overlap was due to large variations in FALM values
within subjects when FALMs were taken from images. FIG.

55

60

from images that approaches the ground-truth FALMs of the
colormeter? To answer this, we next examined how control-
ling certain factors during image acquisition impacts the
image-to-image variation in image-based FALM.

FIG. 3A shows the distributions FALMs from the datasets
described in Table II. As our measure of similarity to the
ground-truth FALMs from the colormeter, we quantified the
EER between FALM distributions across race categories in
FIG. 3B (recall from FIG. 2 that the distributions of ground-
truth FALMs disaggregated by race has an EER of 9.8%).
The range of intra-subject FALM values for each dataset
(FIG. 3C) was quantified as a measure of image-to-image
variation within the subject. The range of FALM values
could not be computed for the Corrected (Corr.) or Ground-
truth (GT) datasets because they had only one sample per
subject.

C. Lightness, Race, and Fitzpatrick Skin Type

When estimating FALMs from images, EER was highest
when only environment was controlled (CE dataset,
EER=32%) and lowest for the Corrected dataset (EER=8%).
The EER of 8% for the Corrected dataset was comparable to
the EER of ground-truth FALMs as measured by the
colormeter (GT dataset, EER=9.8%). The biggest single
decline in EER and in the range of FALM values for each
individual was observed when controlling for device (com-
pare CED and CET in FIGS. 3B and C). This result suggests
that variation across imaging devices is a major source of
lightness variation when the images are acquired in a
common environment.

In terms of EER, the MEDS dataset fell between the CET
and CED datasets. The average range of FALM values for
MEDS images was lower than for CE or CET datasets.
However, MEDS images also had generally lower FALM
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values for subjects in both race categories (FIG. 3A).
Overall, observations for the MEDS dataset are in line with
those from the datasets based on images from the MdTF and
suggests caution when using FALM from images, gathered
without strict controls and corrections, as a phenotypic
measure.

Finally, we measured the correlation between FALM
values estimated from images and ground-truth FALMs
quantified by the colormeter (FIG. 3D). Correlation could
not be estimated for the MEDS dataset because it had
distinct subjects. The correlation for the CE dataset was poor
(dataset CE, Pearson’s p=0.45). However, correlation
improved when controlling for acquisition device and time
(dataset EDT, Pearson’s p=0.78). Correlation was highest
for the Corrected dataset comprised of FALM values from
images taken on a single device, under controlled condi-
tions, with correction for neutral grey background (dataset
Corr., Pearson’s p=0.92). This indicates that, under con-
trolled conditions, image-based FALM values are good
estimates of ground-truth FALMs from the colormeter
instrument.

We next examined the relationship between self-reported
FST, self-reported race, and ground-truth FALMs from the
colormeter. Each subject assessed their own FST according
to a standard scale (Table III). FIG. 4A shows that FST was
distributed differently when disaggregated by race
(%*(5)=128.1, p<<0.001). Subjects that self-identified as
Black or African-American chose FST VI most frequently
whereas subjects that self-identified as White chose FST III
as the most frequent category.

Intuitively, given that ground-truth FALM values also
varied by race (FIG. 2A), we expected to observe a strong
overall association between ground-truth FALLMs and FST.
This was confirmed in FIG. 4B. However, the apparent shift
in FALM distributions observed in FIG. 4B were actually
due to different proportions of individuals from each group
choosing each FST category (FIG. 4A) while distributions of
ground-truth FALMs within each race category remained
largely invariant to FST (FIG. 4C). Indeed, using the EER
threshold for the full population (Lf=52, FIG. 3A), there was
little cross over between B and W ground-truth FALM
distributions within each FST category. This EER value
peaked at only 10% within FST III (FIG. 4D), roughly equal
to the whole group EER of 9.8% from FIG. 2A.

Our conclusion is that FST is not a good predictor of
ground-truth FALMs from the colormeter. We measured the
degree of association between FST, race, and ground-truth
FALMs. Correlation between FST and ground-truth FALMs
(Kendall’s ©=0.51) was lower than between race and
ground-truth FALMs (Kendall’s ©=0.68). Bootstrap resam-
pling showed the difference between these correlations to be
significant (trace—tFST=0.17, 95% CI=0.11-0.23). Within
each race category, the correlation between FST and ground-
truth FALMs decreased (Kendall’s 1=0.23) showing that
most of the association between FST and ground-truth
FALMs in our sample is due to the different proportions of
subjects belonging to each race group choosing each FST
category.

The relatively poor association between FST and ground
truth FALMs was confirmed by linear modelling of ground-
truth FALMs with FST, which produced a poor fit (L ~FST,
R?=0.48) relative to using race information alone (L~race),
R?=0.72). Including both terms in the model hardly
improved the fit over race alone (L ~FST+race), R?=0.77),
although the full model fit was significantly better (F(1)
=429.68, p=2.2¢7'%). This shows that race is actually a
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superior independent predictor of skin tone relative to self-
reported FST, although FST does carry some additional
information about skin tone.
D. Impact of Level of Control on Data Interpretation
Poor phenotype estimation, such as measuring skin tone
from uncontrolled images (Sections IV-A and IV-B) can
have substantial impacts on experimental outcomes. To
illustrate this point, a computer may be programmed to
execute a linear modelling experiment. Linear modelling
experiments area common way to analyze the relationship
between demographic variables and biometric scores [6],
[43], [44]. The experiment first generated simulated biomet-
ric similarity scores according to Equation (1), for each
subject in our dataset. Simulated, as opposed to real, simi-
larity scores were used so the relationship between the input
and output variables was precise and well-known. Note,
those output variables, for a given subject i are i’s gender,
age, and their ground-truth FALM as recorded by the
colormeter. To generate these scores, the intercept f0 was set
to 0.8, each continuous demographic variable was z-trans-
formed, all effect sizes (31, 32, and 33) were set to 0.01, and
the noise term was drawn from a normal distribution as
e~N(u=0,0=0.03). Critically, these scores, visualized in
FIG. 5A, are not a function of the subject’s race.

Si,GT“ﬁo"'ﬁ 1gender, i+[523gei+[53Lf,a:GT,i+<i

We then constructed a different model that allowed for the
possibility of score being a function of a subject’s race, as
shown in Equation (2). This model used the FALM values
from our different datasets ot (A, see Table 1I). Estimation
of model parameters R was performed using ordinary least
squares (OLS) to fit 1,000 bootstrap replicates of the data.
Each replicate resampled 345 subjects from the population
with replacement. The simulated similarity score noise ¢ in
Equation (2) was drawn separately for each replicate. Also,
for each replicate, the optimal model was selected that
minimizes the Akaike Information Criteria, AIC=2k-2 In
(L"), where k represents the number of estimated parameters
in the model and L" represents the maximum value of the
model’s fitted likelihood. AIC measures the goodness of fit
of the model while discouraging over-fitting with a penalty
for increasing the number of model parameters K. To find the
optimal models, we used a step wise procedure in both
directions. This procedure resulted in a total 1,000 optimal
models for each of our FALM datasets o.

Si7a~[50+[5 1genderl-+[Szagei+[53Lfﬂyi+[54'cacei+ei Equation 2

When using ground-truth FALMs as measured by the
colormeter as L;in Equation (2), virtually all (97.2%) of the
optimal model fits included lightness and only 16.5% made
the type II error of including race (FIG. 5B). The average
parameter estimate for lightness in these models correctly
reflected the strength of the simulated relationship. How-
ever, in the models selecting race, the associated parameter
estimate was, on average, negligible (FIG. 5C). As expected,
this shows that linear models that include ground-truth
FALM values are very likely to indicate, correctly, that age,
gender, and lightness are related to score, all with appropri-
ate parameter estimates whereas the relationship between
race and score is absent or negligible in most models.

On the other hand, models fit using FALM estimates from
the poorly controlled CE dataset, led to a vastly different
outcome. Almost all (99.6%) of these models included race
in the optimal model as compared to only 29.2% selecting
lightless L(FIG. 5B). Further, the parameter estimate for L,
in these models was far lower (0.003) than the true rela-
tionship between ground-truth FALMs and score we simu-
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lated (0.01, FIG. 5C). This shows that linear models based
on poorly measured FALM values are likely to lead to an
incorrect interpretation of the relevant demographic factors,
selecting age, gender, and race, but not measured lightness
as related to score. This overestimates the impact of these
demographic variables and entirely misses or under-esti-
mates the impact of FALM on score. Repeating this process
for other datasets shows that the likelihood of a correct
interpretation increases with increased level of acquisition
control in the images from which FALMs are calculated
(FIG. 5B-C). Thus, poor control in estimates of face phe-
notypes can lead to significant errors of interpretation
regarding the significance of race categories in studies of
biometric performance.

Section V

The feasibility of correctly quantifying an individual’s
face skin properties from a photograph was explored.
Ground-truth face area lightness measures (FALMs) from a
calibrated dermographic instrument known as a colormeter
was collected. Ground-truth FALMS were compared to
FALMs assessed from an assortment of face photos. Intra-
subject FALMs assessed from photos can vary greatly from
image to image, three times more than the average difference
in ground-truth FALMs observed between the two race
groups in our study (White and Black or African-American).
This intra-subject variation was present to similar degree in
the NIST MEDS dataset commonly used in biometric per-
formance assessment and is likely present in all computer
vision datasets of humans where acquisition conditions are
uncontrolled. A measure that varies more within subject than
it does between subject groups is a poor descriptor of the
properties of the subject relative to the group. There is strong
evidence that skin tone for use in evaluations of computer
vision applications should not be ascertained from images
captured in an uncontrolled environment or scraped off the
Web.

It is possible to obtain reliable estimates of skin tone from
some images. Prior work has used face images acquired by
a single device under constant conditions to measure relative
skin reflectance after correcting for a neutral grey back-
ground present in the images [6]. FALMs estimated from
images and using such corrections correlated strongly
(p=0.92) with ground-truth FALMs collected using the
colormeter. Thus, an accurate measurement of relative skin
tone can be obtained even when a calibrated skin color meter
is not available.

Fitzpatrick Skin Type (FST) categories may be used to
describe skin tone in images for the purpose of evaluating
algorithms across this measure. This novel use of FST may
be problematic for at least three reasons.

First, FST is designed to classify UV sensitivity of an
individual with specific labels assigned to each category.
FST is not an arbitrary ordinal scale and other ordinal scales
with different category labels or a different method for
arriving at these labels are not likely to produce equivalent
results. FST has been shown in medical literature to be a
generally unreliable estimator of skin pigmentation [17] and
a specifically unreliable estimator for people of color [18],
[19], [20], [21]. FST assessment is subject to inter-rater
reliability issues [16] and known rater biases [13], [14], [15],
most notably conflating skin tone and other features related
to the race of the subject and of the rater [29]. Because of
these concerns, we believe FST may be a poor choice for
evaluating computer vision applications.
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Second, in the medical literature, FST is arrived at by
either self-report or physician accessed direct assessment.
Both require access to the physical subject for whom an FST
measure is being calculated. All existing computer vision
work that has used FST measures has done so by having
human raters judge the skin tone of subjects in images [7],
[9], [10], [11], [16]. However, as this study has shown, the
face image lightness of the same subject varies greatly
across uncontrolled images. Because of this assessment
technique, we believe it is inaccurate to even describe the
arrived at quantifications in [7], [9], [10], [11], [16] as
Fitzpatrick Skin Types. These studies have measured some-
thing using an image, but it was unlikely a good estimator
of'the FST phenotype, and is almost certainly not FST as the
term is conceptualized in the medical community.

Third, even when FST types are calculated in manner
supported by the medical literature, the six point self-
reported FST is a poorer predictor of skin tone than even the
binary race categories self-reported by the population in our
study. The apparent aggregate relationship between FST and
ground-truth FALMs is mainly due to different proportions
of people in each race category selecting different FST
values and a weak relationship between FST and ground-
truth FALMs within each race category. This is strong
evidence that a separate phenotypic measure should be used
to assess skin properties in the assessment of computer
vision algorithms generally and biometric performance in
particular.

FST may be unreliable in computer vision applications,
particularly with people of color. The medical community
agrees with this assessment. In spite of this, if you choose to
use FST classifications in an evaluation of computer vision
applications, you may only arrive at FST determinations by
in-person interview with a test subject. Other measures of
“FST” from images of test subjects are prone to significant
intra-subject, image-to-image variation in observed skin
tone and are not, in fact, FST. In general, when using an
ordinal scale to classify skin properties, changing the survey
instrument or changing the assigned categories changes the
scale. Care should be taken to explain how new scales were
developed and validated before they are used in scientific
studies. The FST ordinal scale may be a poor descriptor of
skin tone and should not be used as such in evaluations of
computer vision applications.

Poor estimates of skin tone can lead to significant errors
in interpretation of linear models relating demographic
variables to biometric performance, a finding that is likely
true of phenotypic measures in general. Ground-truth
FALMs from the colormeter was strongly correlated with
race. When FALMs measured from images were used in a
model fitting exercise, race replaced lightness in optimal
models of simulated biometric performance even when
simulated performance was not actually related to race. This
indicates that studies of demographic effects on performance
should either a priori determine which correlated variables
(e.g., race or lightness) should be used in modelling or be
cautious in their interpretation of the optimal model. Mini-
mizing error in measurement of phenotypes is necessary to
avoid confusion between phenotypes and any correlated
demographic groups.

FIG. 6 shows some statistical results of computer-vision
systems that took place at the 2021 Biometric Technology
Rally. While some systems identified both men and women
with a 100% accuracy, the median is still lower than optimal.
Moreover, camera errors continues to be the largest source
of error in identification systems. Also, identification sys-
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tems continue to struggle identifying people of color. Of
course, all systems had more difficulty in identifying people
with face masks.

FIG. 7 shows how a schematic of measuring skin tone
using taken at the MdTE

Face skin tone: measured “natural” range. ISO/IEC
29794-5 (WD5) defines “unnatural color” as a component of
face image quality. MdTF samples collected by the Appli-
cant suggest a “natural” skin tone range can be found as
shown in Table 4.

FIG. 8 shows equations and a graphical representation of
distances in CIELAB colorspace—normalized for human
perception.

AE=N((ALY 2+(Aa) 2+(Ab)"2) Equation 3:

AE=2.3 is a just-noticeable difference in human percep-

tion.

Hue and chromaticity are an intuitive means of describing
color:

Hue=180/x atan (b/a)

Chromaticity=V(a"2+b"2)

FIGS. 9A-9E shows a graphs of skin color for different
ethnicities as function of Hue vs Lightness. FIG. 9A shows
all ethnicities. FIG. 9B shows a graph of hue and lightness
skin tone for people that identify as White. FIG. 9C shows
a graph of hue and lightness skin tone for people that
identify as Black or African American. FIG. 9 shows a graph
of hue and lightness skin tone for people that identify as
Black or African American and White with an overlapping
area identified.

TABLE 4

A “natural” skin tone in range can be defined as:

a range of values in MdTF sample
Lightness: 23-66
a*: 5-26 (avg=15)
b*: 2-28 (avg =16)
Hue: 6-74 degrees
Chromaticity: 10-32

FIG. 10 shows hue for various skin tones plotted on a
polar graph.

FIG. 11 shows a graph illustration a relation biometric
system performance.

Acquisition:

Failure to Acquire is greater for volunteers with darker

skin tone.
Matching:
Rank one mated scores are higher for those with lighter
skin tone (Cook et al., TBIOM 2018)

True for >50% of acquisition-matching system combina-
tions tested in DHS S&T Rallies (85 of 158)

Relation of scores with skin tone is stronger than with
Race

Relation of scores with skin tone exists for volunteers
identifying as Black or African-American, but not for
those that identify as White.

Relationship between skin tone and mated score can vary

across acquisition systems.

Some of these effects may be due to poor quality of
acquired imagery.

FIG. 12 shows CIELAB Value for color calibrating cam-
eras. CIELAB values are provided for each color element in
these colorcheckers.

FIG. 13A shows two CIELAB colors and their mapping
on a hue/lightness graph for skin tone. From the color-
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checker (classic MacBeth chart) there were only two colors
that correspond to skin color (e.g. blue is not a skin tone
color.) FIG. 13B illustrates there is sparse coverage on a
Spyder Check 48 colorchecker for various skin tones, and
many of the skin tones are outside the “natural” range of skin
color measured at the MdTF. FIG. 13C shows a point that is
considered too light for face skin. FIG. 13D shows that the
X-Rite Digital ColorChecker has sparse, incomplete, and
uneven coverage for various skins tones. Most of the colored
squares associated with skin color are too light relative to
actual skin color. FIG. 13E shows points outside the Google
Monk Scale. FIG. 13F shows an evenly distributed color
space range from collected face data sets. The colored
circles (color swatches) in the graph could be used by the
computer to generate a colorchecker comprising an evenly
distributed color space for faces. Through a data-driven
approach and relying on skin tone colored collected from
actual people, the computer can be configured to generate a
more accurate set of color swatches for a colorchecker.

FIG. 14 shows a graph comparing RGB v sRGB. RAW
camera sensor RGB response is linear. SRGB response is a
non-linear transformation. What happens to darker vs.
lighter values based on this transformation? sRGB differen-
tially compresses linear sensor response. sSRGB values of
0-127 correspond to linear RGB range of 0-54 (range of 128
representing 54). sSRGB values of 128-255 correspond to
linear RGB range of 55-255 (range of 128 representing 200).
Darkest skin sample had linear RGB value of rgb (20, 7, 3).
Lightest skin sample had linear RGB value of rgb (190, 164,
148). This means that the linear sensor response may pre-
serve about 4-times more intensity information for lighter
versus darker skin.

Corgp Equation 4
XL Corgo < 0.04045
Clinear = Corgp +0.055 24
(T) , Csygb > 0.04045

Implications for Acquisition Systems. Face recognition
systems should be able to handle variation in illumination
for face samples with CIELAB color range:

Lightness: 23-66

Hue: 6-74 degrees

Chromaticity: 10-32
Can measure reproduction of CIELAB color within defined
error from target

AE=N((ALY 2HAGY 2+(Ab)"2) Equation 5

Optimize for diffuse—not specular reflection

Implications for Face Image Datasets. Training methods
to evaluate face recognition may include images having
varied skin tone in images outside the natural range. Such a
result may indicates dataset images that are improperly color
calibrated.

A measure of face dataset “color health”:

CHagas =N Y| (=D (c_i € C) Equation 6

N

1
CH gataser = FZQ eC
i=

FIG. 15 shows a CIELCH for approximately 60%
(CHMEDSII)'
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FIG. 16 shows a Measurement-based Skin Tone Color
Scale.

Example Systems and Methods

FIG. 17 shows a process flow for creating a data driven
skin tone target. The process flow may comprise using a skin
tone measuring device 1705 to measure skin tone (or skin
phenotype) across wide sample of volunteers diverse in race,
gender, age 1707. The process may include providing a
camera comprising camera properties associated with cap-
turing an image. The skin tone measuring device may be
connected to a computer or it may comprise a computer
1710. The computer may express the skin tone in CIELAB
or CIELCH coordinates. The computer may identify a range
of observed lightness, chromaticity, and hue values in the
population 1720. The computer may identify a set of N
colors that span the range of observed values 1730. The
computer may spectrally print N color patches to create a
data-driven skin tone calibration target. 1740 The computer
may use the target to adjust camera properties to reliably
reproduce human skin tones. The computer may generate a
face data set comprising a set of images of faces. The face
data set may comprise 10, 25, 50, 100, 500, 1000, 10000, or
N images of faces. The faces may be of individuals in a
natural distribution or random assortment of race, gender,
nationality, sex, and age. The computer may contain a
randomizer configured to select a subset of the face images
in the data set using a randomization algorithm.

A computer may comprise a processor, memory, storage
media, a motherboard, power supply, network interface,
input peripherals (like a mouse and keyboard), a display,
printer, etc. The computer may comprise non-transitory,
computer readable code, software, and/or instructions for
causing the processor to execute a series of steps or pro-
cesses.

FIG. 18 shows a process flow to measure skin tone health
of face dataset and color quality of a single face image. The
process flow may comprise using a skin tone measuring
device 1705 to measure skin tone (or skin phenotype) across
wide sample of volunteers diverse in race, gender, age 1710.
The computer may express the skin tone in CIELAB or
CIELCH coordinates 1715. The computer may identify a
range of observed lightness, chromaticity, and hue values in
the population 1720. The computer may quantify skin tone
for each image in the face dataset 1830. The computer may:
detect face box and segment skin regions 1840; remove skin
pixels with specular reflection 1850; average skin pixels
with diffuse reflection 1860; compute CIELCH coordinates
(or other color coordinate system) for the face 1870.
CIELCH comprises HL.C values (Hue Lightness and Chro-
maticity). The computer may define a normal range of
values for HCL. A normal range may be a range of values
that fall within a predetermined or standard deviation. The
normal range may comprise all measured values of HCL. If
HCL values are inside the normal range 1880, the computer
may set color health value of the face equal to 1 or “true”
1882. If HCL values are outside the normal range setting the
color health value of the face proportional to the shortest
difference in CIELAB space to the boundary of the natural
color range 1885. The computer may measure a proportion
of faces in the dataset that have color health values equal to
1 or “true” 1890.

FIG. 19 shows a system for identifying a target user. The
system may also be designed to determine skin tone or skin
phenotype of a target user. The system may comprise a
camera 1902 for capturing images of a plurality of users; the
image may comprise an identifier. The system may comprise
a computer 1910 configured to: identify lightness, chroma-
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ticity, and hue values of skin tone in the images 1920; store
lightness, chromaticity, and hue values for the images in a
data structure 1925 (such as an array or linked list.) This data
structure can reside in a tangible computer memory as a
nontransitory file. The system may determine data for a
plurality of skin color calibration panels. The skin color
calibration panels may be color composed of the measured
lightness, chromaticity, and hue associated with that identi-
fier 1930. The system may determine data for a plurality of
non-skin color calibration panels. The non-skin color cali-
bration panels may be color composed of the measured
lightness, chromaticity, and hue associated with that identi-
fier 1940. The skin color calibration panels may have a
lightness, chromaticity, and hue consistent with a lightness,
chromaticity, and hue of human skin. The nonskin color
calibration panels may not have a lightness, chromaticity,
and hue consistent with a lightness, chromaticity, and hue of
human skin. The computer may organize the skin color
calibration panels and non-skin color calibration panels into
a grid 1950 in memory of the computer. The computer may
export the grid into a tangible format 1952 or digital format.
The exported grid may take form of a colorchecker 1955.
The colorchecker may be printed on a tangible surface such
as paper or plastic. The computer may generate a color
measuring tool 1956 configured to measure lightness, chro-
maticity, and hue values of the panels in the printed color-
checker or digital colorchecker so that the lightness, chro-
maticity, and hue values are known to the computer and/or
system 1960.

The system may have a second camera 1965 configured to
capture an image of the colorchecker in a room 1970. The
room being the physical space where the image is captured.
The room may have luminance and a capture position. The
room may comprise a background having a color. The color
of the background may be measured by the color measuring
tool. The second camera may comprise a color calibration
logic configured to generate a color corrected image. The
system may comprise a user identification logic 1975. The
user identification logic 1975 may perform image matching
1980 using the color corrected image against other stored
images in a database 1982. The system may obtain user
biographic data from the database by matching a stored
image in the database with the color corrected image 1984.
The system may send a message or signal to an access
control device 1990. An access control device 2000 may be
a physical barrier, locking mechanism, electronic door, or
electronic gate.

FIG. 20 shows an example of an access control device
2000. The access control device can be an electromechanical
device configured to restrict or block movement of a person
through or into a restricted area. It could be an electronic
lock for a hatch. It can be a turn-style. The access control
device can be configured to provide an operator with a
message to permit or deny access to a user. The access
control device 2000 can include biometric matching tech-
nology, e.g., a fingerprint scanner, or a facial image capture
device, etc. As shown in FIG. 20, the user identification logic
1975 may be configured to transmit a message 2065 to the
access control device 2100. In other configurations, the
computer or other component in the system might transmit
the message access control device. In other configurations,
the kiosk and the access control device 2000 might be an
integrated unit. The access control device 2000 may com-
prise access logic configured to determine whether the
matching comparison is above a predetermined threshold.
The access control device may be programmed to execute an
access granted process 2072 if matching comparison is
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above the predetermined threshold. The access control
device may be programmed to execute an access denied
process 2073 if matching comparison is below the prede-
termined threshold. In other configurations, the message
2065 may indicate a positive match based on the matching
comparison 2062. The access control device 2000 may be
programmed to execute the access granted process 2072 if
the message indicates a positive match 2066 based on the
matching comparison 2062. The access control device 2000
may be programmed to execute an access denied process
2073 if the message indicates negative match 2067 based on
the matching comparison 2062. The access control device
may comprise an access display 2075 configured to display
a match indicator 2074 based on a result from the matching
comparison 2062. The match indicator 2074 may be con-
figured to indicate a positive match 2066 if the matching
comparison exceeds a predetermined threshold 2071. The
match indicator 2074 configured to indicate a negative
match 2067 if the matching comparison 2062 does not
exceed a predetermined threshold. The access display 2075
may be configured to display the match indicator 2074 to the
user or an operator. The access control device 2000 may
generate an open command 2080 configured to cause the
access control device to shift from a closed position 2086
into an opened position 2081. In the closed position 2086,
the access control device 2000 may restrict or block access
of'a user to a restricted area. In the closed position 2086, the
access control device may restrict or block a user from
exiting a certain area. In the closed position, the access
control device may restrict or block a user from access a
secure container. In the closed position, the access control
device may lock or seal a door, gate, or hatch. In other
configurations, the message 2065 itself may comprise an
open command configured to cause the access control device
to shift from the closed position into the opened position.
The access control device may comprise a sensor 2076
configured to determine whether the user has passed through
or within a predetermined radius of the access control
device. The access control device may be configured to shift
from the opened position 2081 into the closed position 2086
after receiving a message 2065 from the sensor 2076 that the
user has passed or within a predetermined radius of the
access control device.

The calibration logic may comprise a color calibration
logic configured to adjust lightness, chromaticity, and hue of
the image captured by the camera of the colorchecker
matches the known colorchecker lightness, chromaticity,
and hue values within a tolerance; and save the image as a
color corrected image.

The calibration logic may comprise a camera calibration
logic configured: to adjust focus, white balance, ISO, and
shutter speed of the camera so that the lightness, chroma-
ticity, and hue of an image captured by the camera of the
colorchecker matches the known colorchecker lightness,
chromaticity, and hue values within a tolerance; and save the
image as a color corrected image.

The calibration logic may comprise environmental cali-
bration logic configured to: adjust ambient lighting and
direct lighting in the room so that the lightness, chromaticity,
and hue of an image captured by the camera of the color-
checker; match the known colorchecker lightness, chroma-
ticity, and hue values within a tolerance; and save the image
as a color corrected image.

The calibration logic may comprise camera position logic
configured: to adjust positioning of the camera relative to the
user so that the lightness, chromaticity, and hue of an image
captured by the camera of the colorchecker; match the
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known colorchecker lightness, chromaticity, and hue values
within a tolerance; and save the image as a color corrected
image.

The calibration logic may comprise camera health logic
configured to determine whether camera parameters are
within normal operating parameters; normal operating
parameters including a charged or functioning power supply
and a camera lens substantially free of debris. The camera
health logic may be able sense an amount of power in a
battery. The camera health logic may comprise a lens clarity
tool. The lens clarity tool may be capable of determining
whether the lens of the camera has any scratches or debris
on the tool. The lens clarity may be to provide the camera
health logic with a clarity value depending on how much of
the surface of the lens is covered with scratches or debris.

The computer is configured to export the grid as a digital
colorchecker; export the grid by printing the grid as a printed
colorchecker; or export the grid by printing the grid as a
three-dimensional printed colorchecker. In some configura-
tions the computer is connected to a regular printer (like a
laserjer or inkjet). The computer may also be connected to
a 3D printer.

The second camera of the system may comprise skin
detection logic configured to determine a portion of the
image corresponding to skin of the target user; and skin
match logic configured to determine whether the target
user’s skin matches lightness, chromaticity, and hue of a skin
color calibration panel in the grid.

FIG. 21 shows a system for identifying a target user is
disclosed. The system may comprise a colorchecker 2100
comprising panels containing colors matching human skin
phenotype; the panels comprising known values of hue,
chromaticity, and lightness (HCL). The system may com-
prise a camera 2105 configured to capture 207 an image of
the colorchecker. The system may comprise a calibration
unit 2110 configured to determine an HCL adjustment 2112
required to adjust the image from a camera so that HCL of
the panels matches the known values. The camera may be
configured to take an image of the target user. The system
may comprise an image correction unit 2115 configured to
generate an HCL corrected image 2116 by adjusting the
image of the target user by applying the HCL adjustment to
the image of the target user. The system may comprise user
identification logic 2120. The user identification may be
configured to: perform image matching 2122 using the HCL
corrected image against other stored images in a database;
execute a match percentage algorithm 2124 configured to
compute a match score; select an image from the database
2126 based on the match score if the match score is above
a preset threshold; and send a signal 2128 to an access
control device 2000. The access control device shifting from
a closed/locked position to an open/unlocked position upon
receipt of the signal 2130. The images in the databases are
HCL corrected images. The match score may indicate how
closely the image in the database matched the HCL cor-
rected image of the target user. The access control device
may be configured grant access to the target user to a
restricted location, restricted privileges, restricted files, or a
restricted item. The user identification logic may be further
configured to select an image from the database having a
highest match score relative to all other images in the
database. The user identification logic may comprise a
secondary confirmation logic configured to request the target
user provide a passcode; and a passcode verification logic
configured to verify that the passcode of the target user
matches a presaved passcode for the target user.
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Computer System

The computer and/or camera may comprise standard and
specialized computer parts.

The computer and camera may comprise memory is
specificized instructions designed to carry out aspects of the
invention. Standard computer parts may include components
like a hardware processor communicatively coupled to an
instruction memory and to a data memory. The instruction
memory can be configured to store, on at least a non-
transitory computer-readable storage medium as described
in greater detail below, executable program code. The hard-
ware processor may include multiple hardware processors
and/or multiple processor cores. The hardware processor
may include hardware processors from different devices,
that cooperate. The computer system system may execute
one or more basic instructions included in the memory
executable program code in instruction memory.
Relationship Between Hardware Processor and Executable
Program Code

The relationship between the executable program code in
the instruction memory and the hardware processor is struc-
tural; the executable program code is provided to the hard-
ware processor by imparting various voltages at certain
times across certain electrical connections, in accordance
with binary values in the executable program code, to cause
the hardware processor to perform some action, as now
explained in more detail. The executable program code in
the instruction memory can include an EM Scanner Interface
Logic, a Raw EM Scanning Artificial Neural Network
Library, a Raw EM Scanning Training Logic, a Raw EM
Scan Trained ANN Classifier logic, a Visible Spectra Image
Improvement Logic, and Raw EM Scanning Classifier.

A hardware processor may be thought of as a complex
electrical circuit that is configured to perform a predefined
set of basic operations in response to receiving a correspond-
ing basic instruction selected from a predefined native
instruction set of codes.

The predefined native instruction set of codes is specific
to the hardware processor; the design of the processor
defines the collection of basic instructions to which the
processor will respond, and this collection forms the pre-
defined native instruction set of codes.

A basic instruction may be represented numerically as a
series of binary values, in which case it may be referred to
as a machine code. The series of binary values may be
represented electrically, as inputs to the hardware processor,
via electrical connections, using voltages that represent
either a binary zero or a binary one. These voltages are
interpreted as such by the hardware processor.

Executable program code may therefore be understood to
be a set of machine codes selected from the predefined
native instruction set of codes. A given set of machine codes
may be understood, generally, to constitute a module. A set
of one or more modules may be understood to constitute an
application program or “app.” An app may interact with the
hardware processor directly or indirectly via an operating
system. An app may be part of an operating system.
Computer Program Product

A computer program product is an article of manufacture
that has a computer-readable medium with executable pro-
gram code that is adapted to enable a processing system to
perform various operations and actions. Stated differently,
the executable program code can embody or functionality of
instructions that cause a computer, e.g., that cause the
processor, to perform particular operations or processes.

A computer-readable medium may be transitory or non-
transitory.
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A ftransitory computer-readable medium may be thought
of as a conduit by which executable program code may be
provided to a computer system, a short-term storage that
may not use the data it holds other than to pass it on.

The buffers of transmitters and receivers that briefly store
only portions of executable program code when being
downloaded over the Internet is one example of a transitory
computer-readable medium. A carrier signal or radio fre-
quency signal, in transit, that conveys portions of executable
program code over the air or through cabling such as
fiber-optic cabling provides another example of a transitory
computer-readable medium. Transitory computer-readable
media convey parts of executable program code on the
move, typically holding it long enough to just pass it on.

Non-transitory computer-readable media may be under-
stood as a storage for the executable program code. Whereas
a transitory computer-readable medium holds executable
program code on the move, a non-transitory computer-
readable medium is meant to hold executable program code
at rest. Non-transitory computer-readable media may hold
the software in its entirety, and for longer duration, com-
pared to transitory computer-readable media that holds only
a portion of the software and for a relatively short time. The
term, “non-transitory computer-readable medium,” specifi-
cally excludes communication signals such as radio fre-
quency signals in transit.

The following forms of storage exemplify non-transitory
computer-readable media: removable storage such as a
universal serial bus (USB) disk, a USB stick, a flash disk, a
flash drive, a thumb drive, an external solid-state storage
device (SSD), a compact flash card, a secure digital (SD)
card, a diskette, a tape, a compact disc, an optical disc;
secondary storage such as an internal hard drive, an internal
SSD, internal flash memory, internal non-volatile memory,
internal dynamic random-access memory (DRAM), read-
only memory (ROM), random-access memory (RAM), and
the like; and the primary storage of a computer system.

Different terms may be used to express the relationship
between executable program code and non-transitory com-
puter-readable media. Executable program code may be
written on a disc, embodied in an application-specific inte-
grated circuit, stored in a memory chip, or loaded in a cache
memory, for example. Herein, the executable program code
may be said, generally, to be “in” or “on” a computer-
readable media. Conversely, the computer-readable media
may be said to store, to include, to hold, or to have the
executable program code.

Creation of Executable Program Code

Software source code may be understood to be a human-
readable, high-level representation of logical operations.
Statements written in the C programming language provide
an example of software source code.

Software source code, while sometimes colloquially
described as a program or as code, is different from execut-
able program code. Software source code may be processed,
through compilation for example, to yield executable pro-
gram code. The process that yields the executable program
code varies with the hardware processor; software source
code meant to yield executable program code to run on one
hardware processor made by one manufacturer, for example,
will be processed differently than for another hardware
processor made by another manufacturer.

The process of transforming software source code into
executable program code is known to those familiar with
this technical field as compilation or interpretation and is not
the subject of this application.
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User Interface

A computer system may include a user interface controller
under control of the processing system that displays a user
interface in accordance with a user interface module, i.e., a
set of machine codes stored in the memory and selected from
the predefined native instruction set of codes of the hardware
processor, adapted to operate with the user interface con-
troller to implement a user interface on a display device.
Examples of a display device include a television, a projec-
tor, a computer display, a laptop display, a tablet display, a
smartphone display, a smart television display, or the like.

The user interface may facilitate the collection of inputs
from a user. The user interface may be graphical user
interface with one or more user interface objects such as
display objects and user activatable objects. The user inter-
face may also have a touch interface that detects input when
a user touches a display device.

A display object of a user interface may display informa-
tion to the user. A user activatable object may allow the user
to take some action. A display object and a user activatable
object may be separate, collocated, overlapping, or nested
one within another. Examples of display objects include
lines, borders, text, images, or the like. Examples of user
activatable objects include menus, buttons, toolbars, input
boxes, widgets, and the like.

Communications

The various networks are illustrated throughout the draw-
ings and described in other locations throughout this disclo-
sure, can comprise any suitable type of network such as the
Internet or a wide variety of other types of networks and
combinations thereof. For example, the network may
include a wide area network (WAN), a local area network
(LAN), a wireless network, an intranet, the Internet, a
combination thereof, and so on. Further, although a single
network is shown, a network can be configured to include
multiple networks.

Conclusion

For any computer-implemented embodiment, “means
plus function” elements will use the term “means;” the terms
“logic” and “module” have the meaning ascribed to them
above and are not to be construed as generic means. An
interpretation under 35 U.S.C. § 112(%) is desired only where
this description and/or the claims use specific terminology
historically recognized to invoke the benefit of interpreta-
tion, such as “means,” and the structure corresponding to a
recited function, to include the equivalents thereof, as per-
mitted to the fullest extent of the law and this written
description, may include the disclosure, the accompanying
claims, and the drawings, as they would be understood by
one of skill in the art.

To the extent the subject matter has been described in
language specific to structural features or methodological
steps, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or steps described. Rather, the specific
features and steps are disclosed as example forms of imple-
menting the claimed subject matter. To the extent headings
are used, they are provided for the convenience of the reader
and are not be taken as limiting or restricting the systems,
techniques, approaches, methods, or devices to those
appearing in any section. Rather, the teachings and disclo-
sures herein can be combined or rearranged with other
portions of this disclosure and the knowledge of one of
ordinary skill in the art. It is intended that this disclosure
encompass and include such variation. The indication of any
elements or steps as “optional” does not indicate that all
other or any other elements or steps are mandatory. The
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claims define the invention and form part of the specifica-
tion. Limitations from the written description are not to be
read into the claims.

Certain attributes, functions, steps of methods, or sub-
steps of methods described herein may be associated with
physical structures or components, such as a module of a
physical device that, in implementations in accordance with
this disclosure, make use of instructions (e.g., computer
executable instructions) that may be embodied in hardware,
such as an application specific integrated circuit, or that may
cause a computer (e.g., a general-purpose computer) execut-
ing the instructions to have defined characteristics. There
may be a combination of hardware and software such as
processor implementing firmware, software, and so forth so
as to function as a special purpose computer with the
ascribed characteristics. For example, in embodiments a
module may comprise a functional hardware unit (such as a
self-contained hardware or software or a combination
thereof) designed to interface the other components of a
system such as through use of an application programming
interface (API). In embodiments, a module is structured to
perform a function or set of functions, such as in accordance
with a described algorithm. This disclosure may use nomen-
clature that associates a component or module with a func-
tion, purpose, step, or sub-step to identify the corresponding
structure which, in instances, includes hardware and/or
software that function for a specific purpose. For any com-
puter-implemented embodiment, “means plus function” ele-
ments will use the term “means;” the terms “logic” and
“module” and the like have the meaning ascribed to them
above, if any, and are not to be construed as means.

While certain implementations have been described, these
implementations have been presented by way of example
only and are not intended to limit the scope of this disclo-
sure. The novel devices, systems and methods described
herein may be embodied in a variety of other forms; fur-
thermore, various omissions, substitutions, and changes in
the form of the devices, systems and methods described
herein may be made without departing from the spirit of this
disclosure.

What is claimed is:
1. A system for identifying a target user comprising:
a camera for capturing images of a plurality of users; the
camera configured to assign an identifier to each image
creating an association between a user and an image;
a computer configured to:
measuring lightness, chromaticity, and hue values of
skin tone in the images;

store lightness, chromaticity, and hue values for the
images in a data structure;

determine data for a plurality of skin color calibration
panels, the skin color calibration panels composed of
the measured lightness, chromaticity, and hue asso-
ciated with that identifier;

determine data for a plurality of non-skin color cali-
bration panels, the non-skin color calibration panels
composed of the measured lightness, chromaticity,
and hue associated with that identifier;

the skin color calibration panels having a lightness,
chromaticity, and hue consistent with a lightness,
chromaticity, and hue of human skin;

the non-skin color calibration panels not having a
lightness, chromaticity, and hue consistent with a
lightness, chromaticity, and hue of human skin;

organize the skin color calibration panels and non-skin
color calibration panels into a grid;
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export the grid into a tangible format; the tangible
format comprising a printed colorchecker;

a color measuring tool configured to measure lightness,
chromaticity, and hue values of the panels in the printed
colorchecker so that the lightness, chromaticity, and
hue values are known to the system;

a second camera configured to capture an image of the
colorchecker in a room; the room having a luminance
and a capture position;

the second camera comprising a color calibration logic
configured to generate a color corrected image;

a user identification logic configured to:
perform image matching using the color corrected

image against other stored images in a database;
obtain user biographic data from the database by
matching a stored image in the database with the
color corrected image;
send a signal to an access control device;

the access control device configured to grant access to the
target user to a restricted location, restricted privileges,
restricted files, or a restricted item.

2. The system of claim 1, wherein the calibration logic

comprises a color calibration logic configured to:

adjust lightness, chromaticity, and hue of the image
captured by the camera of the colorchecker;

match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and

save the image as a color corrected image.

3. The system of claim 1, wherein the calibration logic
comprises a camera calibration logic configured to:

adjust focus, white balance, ISO, and shutter speed of the
camera so that the lightness, chromaticity, and hue of an
image captured by the camera of the colorchecker;

match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and

save the image as a color corrected image.

4. The system of claim 1, herein the calibration logic
comprises environmental calibration logic configured to:

adjust ambient lighting and direct lighting in the room so
that the lightness, chromaticity, and hue of an image
captured by the camera of the colorchecker;

match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and

save the image as a color corrected image.

5. The system of claim 1 wherein the calibration logic
comprises camera position logic configured to:

adjust positioning of the camera relative to the user so that
the lightness, chromaticity, and hue of an image cap-
tured by the camera of the colorchecker;

match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and

save the image as a color corrected image.

6. The system of claim 1 wherein the calibration logic
comprises camera health logic configured to determine
whether camera parameters are within normal operating
parameters; normal operating parameters including a
charged or functioning power supply and a camera lens
substantially free of debris.

7. The system of claim 1 wherein the computer is con-
figured to export the grid as a digital colorchecker.

8. The system of claim 1 wherein the computer is con-
figured to export the grid by printing the grid as a printed
colorchecker.

9. The system of claim 1 wherein the computer is con-
figured to export the grid by printing the grid as a three-
dimensional printed colorchecker.
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10. The system of claim 1 wherein the second camera

comprises:

skin detection logic configured to determine a portion of
the image corresponding to skin of the target user; and

skin match logic configured to determine whether a target
user’s skin matches lightness, chromaticity, and hue of
a skin color calibration panel in the grid.

11. A system for determining a skin tone of a target user

comprising:
a camera for capturing images of a plurality of users; the
image comprising an identifier;
a computer configured to:
measure lightness, chromaticity, and hue values of skin
tone in the images;

store the measured lightness, chromaticity, and hue
values for the images in a data structure;

determine data for a plurality of skin color calibration
panels, the skin color calibration panels color com-
posed of the measured lightness, chromaticity, and
hue associated with that identifier;

determine data for a plurality of non-skin color cali-
bration panels, the non-skin color calibration panels
color composed of the measured lightness, chroma-
ticity, and hue associated with that identifier;

the skin color calibration panels having a lightness,
chromaticity, and hue consistent with a lightness,
chromaticity, and hue of human skin;

the non-skin color calibration panels not having a
lightness, chromaticity, and hue consistent with a
lightness, chromaticity, and hue of human skin;

organize the skin color calibration panels and non-skin
color calibration panels into a grid;

export the grid into a tangible format; the tangible
format comprising a printed colorchecker;

measure lightness, chromaticity, and hue values of the
panels in the printed colorchecker or digital color-
checker so that the lightness, chromaticity, and hue
values are known to the system;

a second camera configured to capture a picture of the
colorchecker in a room; the room having luminance
and a capture position;

the second camera comprising a color calibration logic
configured to generate a color corrected image;

a user identification logic configured to:
perform image matching using the color corrected

image against other storages images in database;
obtain user biographic data from the database by
matching a stored image in the database with the
color corrected image;
send a signal to an access control device;

the access control device configured to grant access to the
target user to a restricted location, restricted privileges,
restricted files, or a restricted item.

12. The system of claim 11 wherein the calibration logic

comprises a color calibration logic configured to:

adjust lightness, chromaticity, and hue of the image
captured by the camera of the colorchecker;

match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and

save the image as a color corrected image.

13. The system of claim 11 wherein the calibration logic

comprises a camera calibration logic configured to:

adjust focus, white balance, ISO, and shutter speed of the
camera so that the lightness, chromaticity, and hue of an
image captured by the camera of the colorchecker;



US 12,067,750 B2

31

match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and
save the image as a color corrected image.
14. The system of claim 11 wherein the calibration logic
comprises environmental calibration logic configured to:
adjust ambient lighting and direct lighting in the room so
that the lightness, chromaticity, and hue of an image
captured by the camera of the colorchecker;
match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and
save the image as a color corrected image.
15. The system of claim 11 wherein the calibration logic
comprises camera position logic configured to:
adjust positioning of the camera relative to the user so that
the lightness, chromaticity, and hue of an image cap-
tured by the camera of the colorchecker;
match the colorchecker lightness, chromaticity, and hue
values within a tolerance; and
save the image as a color corrected image.
16. The system of claim 11 wherein the calibration logic
comprises camera health logic configured to determine

10

15

32

whether camera parameters are within normal operating
parameters; normal operating parameters including a
charged or functioning power supply and a camera lens
substantially free of debris.
17. The system of claim 11 wherein the computer is
configured to export the grid as a digital colorchecker.
18. The system of claim 11 wherein the computer is
configured to export the grid by printing the grid as a printed
colorchecker.
19. The system of claim 11 wherein the computer is
configured to export the grid by printing the grid as a
three-dimensional printed colorchecker.
20. The system of claim 11 wherein the second camera
comprises:
skin detection logic configured to determine a portion of
the image corresponding to skin of the target user; and

skin match logic configured to determine whether a target
user’s skin matches lightness, chromaticity, and hue of
a skin color calibration panel in the grid.
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