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Reliability and Validity of Image-Based and
Self-Reported Skin Phenotype Metrics

John J. Howard, Yevgeniy B. Sirotin, Jerry L. Tipton, and Arun R. Vemury

Abstract—With increasing adoption of face recognition systems, it is important to ensure adequate performance of these technologies
across demographic groups, such as race, age, and gender. Recently, phenotypes such as skin tone, have been proposed as superior
alternatives to traditional race categories when exploring performance differentials. However, there is little consensus regarding how to
appropriately measure skin tone in evaluations of biometric performance or in AI more broadly. Biometric researchers have estimated
skin tone, most notably focusing on face area lightness measures (FALMs) using automated color analysis or Fitzpatrick Skin Types
(FST). These estimates have generally been based on the same images used to assess biometric performance, which are often
collected using unknown and varied devices, at unknown and varied times, and under unknown and varied environmental conditions. In
this study, we explore the relationship between FALMs estimated from images and ground-truth skin readings collected using a
colormeter device specifically designed to measure human skin. FALMs estimated from different images of the same individual varied
significantly relative to ground-truth FALMs. This variation was only reduced by greater control of acquisition (camera, background, and
environmental conditions). Next, we compare ground-truth FALMs to FST categories obtained using the standard, in-person, medical
survey. We found that there was relatively little change in ground-truth FALMs across different FST category and that FST correlated
more with self-reported race than with ground-truth FALMs. These findings show FST is poorly predictive of skin tone and should not
be used as such in evaluations of computer vision applications. Finally, using modeling, we show that when face recognition
performance is driven by FALMs and independent of race, noisy FALM estimates can lead to erroneous selection of race as a key
correlate of biometric performance. These results demonstrate that measures of skin type for biometric performance evaluations must
come from objective, characterized, and controlled sources. Further, despite this being a currently practiced approach, estimating FST
categories and FALMs from uncontrolled imagery does not provide an appropriate measure of skin tone.

Index Terms—Face Recognition, Demographics, Skin Reflectance, Scenario Testing, Acquisition Systems
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1 INTRODUCTION

B IOMETRIC technologies are increasingly being adopted
for use as a means of asserting identity in banking,

medicine, travel, and a variety of government applica-
tions. As reliance on biometrics increases, it is important to
demonstrate that these technologies are not only accurate,
but also fair, i.e. that they are consistently accurate for
different groups of people. Many factors can contribute to
differences in accuracy across groups, such as algorithm
architecture, training image properties, biometric proper-
ties, training set composition, test image properties, and
individual behavior [1]. Thus, it is important to test candi-
date biometric systems to quantify any differences between
groups to help determine whether they are fair. However,
the process of dividing individuals into different categories
or groups for evaluation can be problematic.

Face recognition is a type of biometric that can iden-
tify a human individual by using the unique physiolog-
ical features of their face. Previous studies of fairness in
face recognition have divided individuals into demographic
groups including gender and race [2], [3], [4]. However,
grouping individuals based on social categories has sev-
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eral drawbacks. First, social categories evolve over time,
causing some individuals to shift group membership and
causing some groups to disappear altogether. Second, dif-
ferent regions can have different social categories and social
category definitions. Finally, social category definition sets
are not guaranteed to reflect the range of variation of face
physiological features in a population [5].

For these reasons, recent studies have proposed relating
performance to phenotypic measures as a more scientifically
useful analysis of algorithm fairness [6], [7]. Phenotypes are
observable characteristics of a person and as such may offer
better explanations of any observed biometric performance
variation. However, techniques for assigning phenotypes
to individuals are currently understudied. In [7], images
were taken from government websites of three African
countries and three European countries and manually as-
signed a numerical value inspired by the Fitzpatrick Skin
Type (FST) categories. Since then, FST has been proposed
as a measurement of relevance in additional face biometric
studies [8], [9], [10], studies of fairness in self-driving car al-
gorithms [11], and even proposed as a common benchmark
for detailing the performance characteristics of machine
learning algorithms generally [12].

If FST is to become a consensus measure of relevance
in machine learning more broadly and in fairness studies
specifically, it’s appropriate to scrutinize both its use and
the way in which it has been measured in previous studies.
A good measure of skin type should be 1) consistent and 2)
representative of the underlying phenotype. Unfortunately,
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the degree to which skin type measured from images meets
these two criteria has not been well assessed and there are
reasons to question the efficacy of this practice. For example,
face skin lightness in a photograph might be hard to distin-
guish from the amount of light illuminating the face (due
to variation in face pose and ambient illumination when
the photograph was taken) and from variation in camera
settings (e.g. aperture, shutter speed, ISO). Also, in regards
to FST, existing behavioral literature has found humans do
not always accurately determine FST [13] [14] [15] [16]. Fi-
nally, the fundamental appropriateness of FST as a skin type
metric has not been explored in the context of computer sci-
ence tasks, despite documented concerns from the medical
community as to the effectiveness of the FST measure [17],
[18], [19], [20], [21].

In this study, we introduce the term Face Area Lightness
Measures (FALMs) to be any technique for characterizing
the intensity of light reflected by human skin in the fa-
cial region, as measured by a sensor (this has been called
many things in previous studies: lighter/darker-skin [7],
[8], tone [9], [10], [11], reflectance [6], etc.). We assess vari-
ation in FALMs estimated from images taken in various
environments, at various times, and on various devices
and compare these measures to ground-truth measurements
from a calibrated dermological device, designed specifically
to measure skin lightness. We then explore the suitability
of FST as a proxy to FALMs by comparing ground-truth
FALM readings with subjects’ self-reported FST. Finally, we
perform data simulation and modelling to show that poor
FALM estimations can result in the erroneous selection of
categorical demographic race as the significant explanatory
cause of performance variation, even when this variation is
primarily driven by FALMs.

2 BACKGROUND

2.1 Demographics and biometric performance

Prior studies have examined differences in biometric per-
formance across demographic groups. For instance, face
recognition algorithms trained on one demographic were
found to perform better on that demographic [22]. Another
study noted that some face datasets used for algorithm
development under-represented people with darker skin
and that gender classification algorithms had poorer per-
formance for women with darker-skin [7].

However, it is not clear whether skin tone and race can
be used interchangeably and are equally related to biometric
performance or indeed contribute equally to different mea-
sures of biometric performance. For example, in a dataset
captured during a biometric scenario test that simulated
real world capture conditions on eleven commercial face
recognition systems, subjects with lower relative skin re-
flectance (darker skin) had lower mated similarity scores
than subjects with high reflectance [6]. Using statistical
modelling, [6] also found skin reflectance, as measured by
the same ground-truth sensor used here (see Section 3.4),
was a better predictor of mated score performance than self-
reported race labels. This effect was not uniformly observed
across all eleven cameras, with the effect being “almost
negligible” for the best cameras.

A subsequent study looked at face recognition perfor-
mance on a static dataset, collected with a single camera,
in controlled lighting and background conditions [9]. Their
results differ from [6] in that African-American subjects had
lower FNMR (and presumably higher mated scores) than
White subjects. Using ”FST” values assigned by a three-
person panel, via image examination, [9] also concludes
these results (and other effects on false match rate) were
not due to skin tone. Interestingly, all three reviewers in [9]
agreed on skin tone assignment in only roughly one-third of
subjects. Finally, in the largest study of its kind to date, [4]
found “[t]he lowest false negative rates occur in black faces”,
but did not attempt to quantify skin type values from the
images in their dataset. Discrepancies between [6] and [4],
[9] are not entirely surprising as each used different datasets,
algorithms, and race/skin-type labelling practices.

2.2 Optical properties of skin and skin type
Measurement of skin optical properties depends on the de-
gree to which skin reflects, absorbs, scatters, and transmits
incident light [23]. Skin is a heterogeneous surface and is
affected by variable amount of blood irrigation and pig-
mentation. Three layers of skin are visible from the surface:
epidermis, dermis, and variable amounts of subcutaneous
adipose tissue. The living part of the epidermis is the loca-
tion of most skin pigmentation, which is caused by variable
numbers of red/yellow phaeomelanin and brown/black
eumelanin. In the dermis, blood, hemoglobin, beta carotene
and bilirubin can absorb light, while the fibrous structure of
the dermis produces scattering. Skin erythema contributes
to skin redness and is related to the dilation of blood vessels
nearest to the surface of the skin [23], [24].

Spectroscopic analysis of skin under controlled con-
ditions allows accurate determination of the constituent
chromophores. In clinical practice, spectroscopy is routinely
used to estimate melanin and erythema content using cal-
ibrated colormeter devices created for this purpose [24],
[25]. In addition to readings of melanin and erythema, these
devices provide sRGB color that can be converted to the
L∗a∗b∗ colorspace where lightness is represented by the L*
parameter [26]. Under well controlled laboratory conditions,
such readings have also been demonstrated as possible
using RGB cameras [27], [28].

2.3 Fitzpatrick skin type classification
The Fitzpatrick Skin Type (FST) is the most used skin classi-
fication system in dermatology [29]. The FST was originally
designed to classify the UV-sensitivity of individuals with
white skin for determining doses of ultraviolet A photother-
apy, a treatment for dermatitis and other skin disorders. The
original FST instrument was released in 1975 and included
four skin types (I-IV). It was updated in 1988, adding two
additional skin types to account for individuals with darker
skin (V-VI) [30].

According to medical literature, there are two ways of
establishing the FST of an individual: self-report or third-
party direct assessment by an expert, both are subjective and
involve recording the subject’s answers to questions about
skin responses to sun exposure. Fitzpatrick Skin Type was
initially described as self-reported only [30]. In later studies,
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doctors estimated FST after an in-person inspection [29] [31].
However, even with access to the physical subject, the FST
system is known to be generally unreliable estimator of
skin pigmentation [17] and FST types are known to be
specifically less reliable for non-White individuals [18], [19],
[20], [21]. Interestingly, physician-assessed FST types have
been demonstrated to correlate with race, but when FSTs are
self reported, the relationship between FST and race is not
consistent [31], [32], [33]. Indeed, recent work has pointed
out that the FST in medicine, in addition to measuring
skin reactivity to ultraviolet illumination, is now also also
sometimes used as a proxy for race, which confounds the
interpretation of the measure [29]. Some medical researchers
have even argued against any subjective assessments of
skin type, favoring a more quantitative approach using
calibrated spectrophotometers or digital cameras [28].

In 2018, FST was utilized, for the first time, as a proxy
for darker/lighter-skin in the evaluation of a computer
algorithm. That paper discussed the accuracy of gender
classification algorithms across FST groups derived from
face photos [7]. This spurred numerous other computer sci-
ence papers where the relationship between FST measures
and performance was measured in domains such as face
recognition [8], [9], [10], [16] and pedestrian detection for
self driving cars [11]. FST has even been proposed as a
standardized method for documenting the performance of
a generic machine learning algorithm [12].

Crucially, the FST measures in [7], [9] and [11] were de-
termined by third-party assessment of previously acquired
images of individuals. No direct assessment or self-report
was performed as part of these studies, despite being the
documented method of arriving at an FST classification, as
laid out in the medical literature [30] [29] [31]. Additionally,
these studies did not attempt to validate that their third-
party, remote assessments of FST were accurate represen-
tations of actual FST measures and did not address the
well documented concerns of the medical community with
the FST approach to skin color classification [17], [18], [19],
[20], [21]. It is well established that human perception of
face color is known to be affected by race [34] and by the
color of other face features, such as lips [35]. Furthermore,
any accurate assessment of skin type from a photograph
would depend critically on the camera system and degree
to which skin tone in images is represented reliably. This
representation is affected by pose, ambient lighting, choice
of camera, and likely many more factors. The concerns
with third-party assessment of FST were supported by a
2021 study measured the consistency of FST ratings across
different people and against automated measures, finding
notable variation and inconsistencies between raters for a
single image and between automated measures from differ-
ent images of the same person [16].

Finally, it is important to note that, when using ordinal
scales, like FST, in scientific studies, altering either the
survey instrument or the assigned categories alters the scale.
FST refers to a 6 point scale, where individual options
are related to sun burn and skin sensitivity to UV expo-
sure (see Section 3.5). FST is arrived at my asking specific
questions to the subject in question or by direct physician
examination [21], [31], [33], [36]. Other scales, such as the
IARPA IJC-B skin tone descriptions [37], are not described

Source Race Images Subjects
MEDS Images B 595 184
MEDS Images W 458 229
Historic Images B 1874 181
Historic Images W 1710 164
Acquisition Images B 1458 181
Acquisition Images W 1320 164
Enrollment Images B 181 181
Enrollment Images W 164 164

TABLE 1
Images and subjects per source examined in this study.

as FST, despite also being a 6 point scale. This is because
both the categories and the survey instrument are different.
Categories in [37] are determined by Amazon Mechanical
Turk workers (with no access to the physical subject they are
labeling) and are on a scale of increasing skintone darkness.
Using different category labels or a different method for
arriving at these labels are unlikely to produce the same
ratings as the other instruments. When new ordinal scales
are introduced, care must be taken to explain both how
this scale was developed and how it validated against the
underlying phenomena the scale is measuring.

3 METHODS

L∗a∗b∗ colorspace, particularly the L*, or lightness, compo-
nent has been proposed a quantitative means for the com-
munication of skin-color information. It is advantageous
over other colorspace representations because changes in
the L* dimension relate directly to changes in human per-
ception [26]. In this study we leverage the L∗a∗b∗ col-
orspace, and refer to different approaches to characterize
light reflected by the skin, from the facial region and
measured by a sensor, as Face Area Lightness Measures
(FALMs).

We first outline the source of our subject and image data
(Section 3.1) and arrange these data into various datasets
that vary by level of control (Section 3.2). Then, to estab-
lish the consistency and appropriateness of different FALM
techniques, we compare FALMs estimated from images in
these datasets (Section 3.3) to ground-truth FALMs col-
lected by a calibrated instrument (Section 3.4). Ground-truth
FALMs are also compared to self-reported FST categories
(Section 3.5).

3.1 Sources of subject and image data

Data for this study came from two sources. Fist, the Mary-
land Test Facility (MdTF) is a biometrics research lab affili-
ated with the U.S. Department of Homeland Security (DHS)
that has been in operation since 2014. As part of biometric
technology evaluations at the MdTF, human subjects are
recruited as test participants from the general population. In
particular, a test in May of 2019, acquired face photographs
from 345 human subjects on nine different acquisition de-
vices [38]. These photographs (“Acquisition Images”) were
compared to other face photographs that had been collected
for each subject over a period of 1-5 years preceding the 2019
test (“Historic Images”). Historic images were collected on a
variety of different face biometric acquisition devices at the
MdTF. Acquisition Images from the nine acquisition devices
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Dataset (A) Source Image Environment (E) Time (T) Device (D) Face Area
Based Lightness Measure (Lf )

i MEDS MEDS Yes Varied Varied Varied Lf

ii CE Historic & Acquisition Yes Constant Varied Varied Lf

iii CET Acquisition Yes Constant Constant Varied Lf

iv CED Historic & Acquisition Yes Constant Varied Controlled Lf,d − µf,d + µf
v CEDT Acquisition Yes Constant Constant Controlled Lf,d − µf,d + µf

vi Corrected Enrollment Yes Constant Constant Constant (Lf,d − Lb,d) +
1
2
(µf,d − µb,d)

vii Ground-truth Colormeter No Constant Constant Constant 1
2
(Lrc + Llc)

TABLE 2
Face area lightness datasets examined.

were also compared to high-quality face photographs, cap-
tured by a trained operator, using a Logitech C920 webcam
(“Enrollment Images”). Enrollment Images were captured
in front of a neutral grey background in accordance with
ISO/IEC 19794-5. All race information from MdTF subjects
was self reported by the subjects upon study enrollment.
Also, as part of [38] ground-truth measures were taken
using a calibrated dermographic instrument, specifically
designed to measure skin (see Section 3.4).

The second data source of images for this study is Special
Database 32 - Multiple Encounter Dataset (“MEDS Images”)
from the U.S. National Institutes of Science and Technology
(NIST). The MEDS dataset consists of mugshot photos from
individuals who have had multiple encounters with law
enforcement [39]. Race information from these subjects is
included as part of the MEDS dataset but was assigned
by a third party, not self reported by the subject. Table 1
summarizes the number of subjects and images for each
data source used in this study. In both sources, subjects
assigned or self reported a race other than Black (B) or White
(W) were limited in numbers and thus removed from the
analysis presented in this manuscript.

3.2 Face area lightness datasets

To study the effect of various controls during the photo-
graphic acquisition process on FALMs, the data described
in Section 3.1 were arranged into seven distinct datasets.
Each of these datasets afforded different levels of control
for environment, capture time, and device. For each of these
datasets, FALMs were calculated based on the information
available. Table 2 shows the seven face area lightnes datasets
used in this study and the corresponding FALM (Lf ) equa-
tions. Sections 3.3 and 3.4 outline the techniques used to
calculate the FALM values for each dataset.

3.3 FALMs from images

To assess FALMs from images, pixels falling on the skin
of the face were selected by face finding, circular masking,
and outlier removal using methods adapted from [40] and
previously used by [6]. The sRGB values of face skin pixels
were averaged and converted from sRGB to the L∗a∗b∗

colorspace using the D65 illuminant. FALMs (Lf ) were
estimated from the resulting L* channel.

FALMs from the MEDS dataset images came from varied
environment, varied devices, and varied acquisition times.
The CE and CET datasets consist of images collected in
the constant environment of the MdTF, i.e. a single location
with controlled/standard office lighting (600 Lux). The CET

dataset consisted of images collected in a single day, i.e.
constant time, ruling out any variation in subjects’ actual
skin pigmentation across these images. For images in the
MEDS, CE, and CET datasets there is no way to normalize
Lf values further and the FALM for these datasets are
calculated as described in the previous paragraph.

However, the CED and CEDT datasets consist of images
collected at the MdTF that are associated with specific
acquisition devices. Using this information, we controlled
FALM Lf values for imaging device d to generate controlled
Lf,d values by subtracting the average FALM values within
each device µf,d and adding the grand average face image
lightness µf .

The “Corrected” dataset consists of only Enrollment
Images (see Section 3.1). In addition to being collected by a
single acquisition device, these images are captured in front
of a neutral grey background. Consequently, they can be cor-
rected for background image lightness. This correction was
performed by subtracting background lightness Lb,d from
FALM Lf,d and reconstituting with the average difference
between face and background lightness. Table 2 (rows i - vi)
shows the six datasets of FALM values from images used in
this study.

3.4 Ground-truth FALMs from calibrated equipment

As part of [38], ground-truth FALMs were recorded using
a calibrated hand-held sensor (DSM III Colormeter, Cortex
Technology, Figure 1). The sensor measures skin color using
an RGB sensor to image a 7mm2 patch of skin under
standard illumination provided by two white light emitting
diodes. The device can accurately measure the color as well
as erythema and melanin content of skin [25], [41].

Fig. 1. The DSM III Colormeter, Cortex Technology

For each of the 345 subjects in [38], two bilateral mea-
surements were collected by placing the colormeter on
each subject’s face approximately on the subject’s zygomatic
arch. The two sRGB measurements were collected in close
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Fig. 2. Distribution of face area lightness measures (FALM) from the groundtruth colormeter device and from images. A. Distribution of ground-
truth FALMs (Lf ) using the colormeter device. Note bi-modal distribution with apparently distinct peaks for each self-reported race category. B.
Distribution of Lf values computed using images in the CE dataset. Note significant overlap between Lf values for the two race categories. C.
Distribution of the range of Lf values observed for each subject in the CE dataset. Note that Lf value range frequently exceeds the Lf difference
between race categories. Dotted lines in A and B indicate equal error rate threshold. Triangles mark average within each race category. D. Sample
images and computed Lf values for a single subject self-identifying as Black or African-American. This subject’s ground-truth colormeter Lf was
28. E. Sample images and computed face lightness values for a single subject self-identifying as White. This subject’s ground-truth colormeter Lf

was 35. Note strong variation in Lf values when measured from different images. Facets labelled “S” are images taken by difference devices on
the same day. Facets labelled “H” are historic are images taken by different devices in different days.

succession and converted to the L∗a∗b∗ colorspace using
the D65 illuminant (Lrc and Llc). The subjects’ skin was not
cleaned prior to collection. As such, the colormeter measures
are likely related to subjects’ facultative pigmentation as
well as any contributions from makeup in a manner similar
to subjects’ face images from cameras. The skin contacting
surfaces of the colormeter were wiped with rubbing alcohol
between subjects and the device itself was calibrated twice
a day using a standardized procedure involving a white
calibration plate provided by the colormeter manufacturer.
We verified that our ground-truth FALM readings matched
skin tone readings reported in prior work [24], [42]. It’s
important to note that colormeter readings were collected
on the same day as the images in the Enrollment and

Acquisition image set and are from the same test subjects.
Images in the Historic image set are also from these same
test subjects, but were collected on days prior to the day
when colormeter readings were taken (see Section 3.1).

3.5 Self-reported Fitzpatrick Skin Type

Also as part of [38], each subject self-reported their FST as
part of a paper survey. There are several ways to self-report
FST, which vary in question, wording, the number of ques-
tions, and description of FST categories [21], [31], [33], [36].
The method we selected uses the single-question measure
adapted from [36] because of its simplicity and because
it includes specific descriptors that are more meaningful
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for darker skin tones. Participants were asked “Which of
the following descriptions best matches your skin type?”
and allowed to select one option from a list that was most
consistent with their experience. Table 3 shows the options
provided and their mapping onto FST skin types, per [36].
Responses were digitized for each test subject.

Option Text FST
Highly sensitive, always burns, never tans I
Very sun sensitive, burns easily, tans minimally II
Sun sensitive to skin, sometime burns, slowly
tans to light brown

III

Minimally sun sensitive, burns minimally, al-
ways tans to moderate brown

IV

Sun insensitive skin, rarely burns, tans well V
Sun insensitive, never burns, deeply pigmented VI

TABLE 3
FST question response options.

4 RESULTS

4.1 Variation in image-based FALMs

Figure 2A shows the distribution of ground-truth FALM
values for the 181 Black and 164 White test subjects in
the MdTF dataset (Table 2, row vii). We note little overlap
between the two distributions and an equal error rate (EER)
of 9.8%, if a simple threshold based classification scheme
were used. Conversely, FALM values estimated from images
where device and acquisition time varies (the CE dataset)
were more broadly distributed (Figure 2B) such that the
distributions of FALMs between the two race categories
overlapped to a greater extent (EER = 32.2%)

This overlap was due to large variations in FALM values
within subjects when FALMs were taken from images. Fig-
ure 2C shows the range of FALM values for each individual
in the CE dataset. These intra-subject FALM values ranged,
on average, by 38 units for Black or African American
subjects and by 39 for White subjects, corresponding to more
than a 2-fold difference in measured face area lightness,
for a single subject, from image to image. This variation
across images is 3 times larger than the 13 point difference
in the average FALM of individuals in the two race groups
(Figure 2B).

The large image-to-image variation in FALMs is demon-
strated for two examples subjects in Figure 2D-E. The
subject in Figure 2D self-identified as Black or African-
American with a ground-truth FALM of 28 and the sub-
ject in Figure 2E self-identified as White with a ground-
truth FALM reading of 35. The variation in FALMs across
images indicates that measuring face area lightness from
uncontrolled images does not provide a suitable estimate
of a subject’s ground-truth FALM as determined by the
colormeter instrument.

4.2 Control in image-based FALMs

If images captured on various devices at various times
are unsuitable for estimating ground-truth FALMs, what
level of control must be added to image capture to allow
for FALMs from images that approaches the ground-truth
FALMs of the colormeter? To answer this, we next examined

how controlling certain factors during image acquisition im-
pacts the image-to-image variation in image-based FALM.

Figure 3A shows the distributions FALMs from the
datasets described in Table 2. As our measure of similarity to
the ground-truth FALMs from the colormeter, we quantified
the EER between FALM distributions across race categories
in Figure 3B (recall from Figure 2 that the distributions of
ground-truth FALMs disaggregated by race has an EER of
9.8%). As our measure of image-to-image variation within
subject, we quantified the range of intra-subject FALM val-
ues for each dataset (Figure 3C). The range of FALM values
could not be computed for the Corrected (Corr.) or Ground-
truth (GT) datasets because they had only one sample per
subject.

Fig. 3. Variation in face area lightness measures (FALMs). A. Distribu-
tions of FALMs (Lf ) across B and W subjects for each dataset. B. Equal
error rate between FALM distributions for B and W subjects. C. Range
of intra subject Lf for each dataset. Error bars are standard deviation
across subjects. Note Corrected (Corr.) and Ground-truth (GT) datasets
had only one image per subject so range could not be computed.
D. Pearson correlation (ρ) between Lf values from each dataset and
the ground-truth colormeter Lf values. Error bars are 95% confidence
intervals.

4.3 Lightness, race, and Fitzpatrick Skin Type

When estimating FALMs from images, EER was highest
when only environment was controlled (CE dataset, EER =
32%) and lowest for the Corrected dataset (EER = 8%). The
EER of 8% for the Corrected dataset was comparable to the
EER of ground-truth FALMs as measured by the colormeter
(GT dataset, EER = 9.8%). The biggest single decline in EER
and in the range of FALM values for each individual was
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observed when controlling for device (compare CED and
CET in Figure 3B and C). This suggests that variation across
imaging devices is a major source of lightness variation
when the images are acquired in a common environment.

In terms of EER, the MEDS dataset fell between the
CET and CED datasets. The average range of FALM values
for MEDS images was lower than for CE or CET datasets.
However, MEDS images also had generally lower FALM
values for subjects in both race categories (Figure 3A).
Overall, observations for the MEDS dataset are in line with
those from the datasets based on images from the MdTF and
suggests caution when using FALM from images, gathered
without strict controls and corrections, as a phenotypic
measure.

Finally, we measured the correlation between FALM
values estimated from images and ground-truth FALMs
quantified by the colormeter (Figure 3D). Correlation could
not be estimated for the MEDS dataset because it had
distinct subjects. The correlation for the CE dataset was
poor (dataset CE, Pearson’s ρ = 0.45). However, correlation
improved when controlling for acquisition device and time
(dataset EDT, Pearson’s ρ = 0.78). Correlation was high-
est for the Corrected dataset comprised of FALM values
from images taken on a single device, under controlled
conditions, with correction for neutral grey background
(dataset Corr., Pearson’s ρ = 0.92). This indicates that,
under controlled conditions, image-based FALM values are
good estimates of ground-truth FALMs from the colormeter
instrument.

We next examined the relationship between self-reported
FST, self-reported race, and ground-truth FALMs from the
colormeter. Each subject assessed their own FST according
to a standard scale (Table 3). Figure 4A shows that FST
was distributed differently when disaggregated by race
(χ2(5) = 128.1, p << 0.001). Subjects that self-identified
as Black or African-American chose FST VI most frequently
whereas subjects that self-identified as White chose FST III
as the most frequent category.

Intuitively, given that ground-truth FALM values also
varied by race (Figure 2A), we expected to observe a strong
overall association between ground-truth FALMs and FST.
This was confirmed in Figure 4B. However, the apparent
shift in FALM distributions observed in Figure 4B were
actually due to different proportions of individuals from
each group choosing each FST category (Figure 4A) while
distributions of ground-truth FALMs within each race cate-
gory remained largely invariant to FST (Figure 4C). Indeed,
using the EER threshold for the full population (Lf = 52,
Figure 3A), there was little cross over between B and W
ground-truth FALM distributions within each FST category.
This EER value peaked at only 10% within FST III (Fig-
ure 4D), roughly equal to the whole group EER of 9.8% from
Figure 2A.

Our conclusion is that FST is not a good predictor of
ground-truth FALMs from the colormeter. We measured the
degree of association between FST, race, and ground-truth
FALMs. Correlation between FST and ground-truth FALMs
(Kendall’s τ = 0.51) was lower than between race and
ground-truth FALMs (Kendall’s τ = 0.68). Bootstrap resam-
pling showed the difference between these correlations to be
significant (τrace− τFST = 0.17, 95% CI = 0.11-0.23). Within

each race category, the correlation between FST and ground-
truth FALMs decreased (Kendall’s τ = 0.23) showing that
most of the association between FST and ground-truth
FALMs in our sample is due to the different proportions
of subjects belonging to each race group choosing each FST
category.

The relatively poor association between FST and ground-
truth FALMs was confirmed by linear modelling of ground-
truth FALMs with FST, which produced a poor fit (Lf ∼
FST , R2 = 0.48) relative to using race information alone
(Lf ∼ race), R2 = 0.72). Including both terms in the model
hardly improved the fit over race alone (Lf ∼ FST + race),
R2 = 0.77), although the full model fit was significantly
better (F (1) = 429.68, p = 2.2e−16). This shows that race
is actually a superior independent predictor of skin tone
relative to self-reported FST, although FST does carry some
additional information about skin tone.

Fig. 4. Relationship between Fitzpatrick Skin Type (FST) score and face
area lightness measurements (FALMs). A. Distribution of self-reported
FST by race. B. Distributions of FALM (Lf ) values within each FST
category. Note apparent association between FST and (Lf ). Horizontal
line corresponds to overall equal error rate (EER) classification thresh-
old. C. Distributions of (Lf ) within each FST category by race. Note
relatively smaller relationship between FST and (Lf ) and relatively large
separation between (Lf ) distributions for each race within each FST
category. D. Error rate (ER) values for race classification based on (Lf )
within each FST category using the overall EER threshold.

4.4 Impact of level of control on data interpretation

Poor phenotype estimation, such as measuring skin tone
from uncontrolled images (Section 4.1 and 4.2) can have sub-
stantial impacts on experimental outcomes. To illustrate this
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Fig. 5. Model selection and parameter estimation is affected by level of control in phenotype estimation. A. Results of a simulated experiment with
a known relationship whereby a simulated score is a function of face area lightness measure (FALM), gender, age (age not shown), and additive
noise. Critically, score is not a function of race. B. Proportion of times each demographic factor is selected based on model fits to resampled data
FALM from different datasets. Note that the likelihoods of erroneously selecting race (a type II error) and excluding FALM (a type I error) becomes
greater with reduced level of control in the dataset acquisition conditions. C. Parameter estimates for each demographic factor included in models
fit to resampled data using different FALM estimates. Red lines denote parameter estimates used to generate the simulated scores. Note that
the parameter estimate for FALM decreases with reduced level of control while the parameter estimate for race is increased. Error bars are 95%
bootstrap confidence intervals.

point, we executed a linear modelling experiment, which
is a common way to analyze the relationship between de-
mographic variables and biometric scores [6], [43], [44]. We
first generated simulated, mated, biometric similarity scores
according to Equation 1, for each subject in our dataset.
Simulated, as opposed to real, similarity scores were used
so the relationship between the input and output variables
was precise and well-known. Note, those output variables,
for a given subject i are i’s gender, age, and their ground-
truth FALM as recorded by the colormeter. To generate
these scores, the intercept β0 was set to 0.8, each continuous
demographic variable was z-transformed, all effect sizes (β1,
β2, and β3) were set to 0.01, and the noise term was drawn
from a normal distribution as ε ∼ N (µ = 0, σ = 0.03).
Critically, these scores, visualized in Figure 5A, are not a
function of the subject’s race.

Si,GT ∼ β0 + β1genderi + β2agei + β3Lf,a=GT,i + εi (1)

We then constructed a different model that allowed for
the possibility of score being a function of a subject’s race,
as shown in Equation 2. This model used the FALM values
from our different datasets a (a ∈ A, see Table 2). Estimation
of model parameters β was performed using ordinary least
squares (OLS) to fit 1,000 bootstrap replicates of the data.
Each replicate resampled 345 subjects from the population
with replacement. The simulated similarity score noise ε in
Equation 2 was drawn separately for each replicate. Also
for each replicate, the optimal model was selected that min-
imizes the Akaike Information Criteria, AIC = 2k−2ln(L̂),
where k represents the number of estimated parameters
in the model and L̂ represents the maximum value of the
model’s fitted likelihood. AIC measures the goodness of fit

of the model while discouraging over-fitting with a penalty
for increasing the number of model parameters k. To find
the optimal models, we used a step wise procedure in both
directions. This procedure resulted in a total 1,000 optimal
models for each of our FALM datasets a.

Si,a ∼ β0+β1genderi+β2agei+β3Lf,a,i+β4racei+εi (2)

When using ground-truth FALMs as measured by the
colormeter as LF in Equation 2, virtually all (97.2%) of
the optimal model fits included lightness and only 16.5%
made the type II error of including race (Figure 5B). The
average parameter estimate for lightness in these models
correctly reflected the strength of the simulated relationship.
However, in the models selecting race, the associated pa-
rameter estimate was, on average, negligible (Figure 5C). As
expected, this shows that linear models that include ground-
truth FALM values are very likely to indicate, correctly,
that age, gender, and lightness are related to score, all with
appropriate parameter estimates whereas the relationship
between race and score is absent or negligible in most
models.

On the other hand, models fit using FALM estimates
from the poorly controlled CE dataset, led to a vastly dif-
ferent outcome. Almost all (99.6%) of these models included
race in the optimal model as compared to only 29.2% select-
ing lightless Lf (Figure 5B). Further, the parameter estimate
for Lf in these models was far lower (0.003) than the true
relationship between ground-truth FALMs and score we
simulated (0.01, Figure 5C). This shows that linear models
based on poorly measured FALM values are likely to lead
to an incorrect interpretation of the relevant demographic
factors, selecting age, gender, and race, but not measured
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lightness as related to score. This over-estimates the im-
pact of these demographic variables and entirely misses or
under-estimates the impact of FALM on score. Repeating
this process for other datasets shows that the likelihood
of a correct interpretation increases with increased level of
acquisition control in the images from which FALMs are
calculated (Figure 5B-C). Thus, poor control in estimates of
face phenotypes can lead to significant errors of interpreta-
tion regarding the significance of race categories in studies
of biometric performance.

5 DISCUSSION

In this study, we explored the feasibility of correctly quan-
tifying an individual’s face skin properties from a photo-
graph. We collected ground-truth face area lightness mea-
sures (FALMs) from a calibrated dermographic instrument,
known as a colormeter. We then compared these to FALMs
assessed from an assortment of face photos. We find that
intra-subject FALMs assessed from photos can vary greatly
from image to image, three times more than the average
difference in ground-truth FALMs observed between the
two race groups in our study (White and Black or African-
American). This intra-subject variation was present to sim-
ilar degree in the NIST MEDS dataset commonly used in
biometric performance assessment and is likely present in
all computer vision datasets of humans where acquisition
conditions are uncontrolled. A measure that varies more
within subject than it does between subject groups is a poor
descriptor of the properties of the subject relative to the
group. We believe this is strong evidence that skin tone for
use in evaluations of computer vision applications should
not be ascertained from images captured in an uncontrolled
environment or scraped off the web.

However, this study also shows that it is possible to
obtain reliable estimates of skin tone from some images.
Prior work has used face images acquired by a single
device under constant conditions to measure relative skin
reflectance after correcting for a neutral grey background
present in the images [6], and in this study we validate that
approach. FALMs estimated from images and using such
corrections correlated strongly (ρ = 0.92) with ground-truth
FALMs collected using the colormeter. Thus, an accurate
measurement of relative skin tone can be obtained even
when a calibrated skin color meter is not available.

Next, the computer vision community has recently be-
gun using Fitzpatrick Skin Type (FST) categories to de-
scribe skin tone in images, for the purpose of evaluating
algorithms across this measure. This methodology has been
proposed in studies of gender classification [7], biometric
recognition [8], [9], [10], [16], and pedestrian detection [11]
algorithms. It has also been suggested as a standardized
method for documenting the performance of a generic ma-
chine learning algorithm [12]. Our work shows that this
novel use of FST may be problematic for at least three
reasons. First, as we discuss, FST was designed to classify
UV sensitivity of an individual with specific labels assigned
to each category. FST is not an arbitrary ordinal scale and
other ordinal scales with different category labels or a dif-
ferent method for arriving at these labels are not likely to
produce equivalent results. FST has been shown in medical

literature to be a generally unreliable estimator of skin
pigmentation [17] and a specifically unreliable estimator
for people of color [18], [19], [20], [21]. FST assessment is
subject to inter-rater reliability issues [16] and known rater
biases [13], [14], [15], most notably conflating skin tone and
other features related to the race of the subject and of the
rater [29]. Because of these concerns, we believe FST is a
poor choice for evaluating computer vision applications.

Second, in the medical literature, FST is arrived at by
either self-report or physician accessed direct assessment.
Both require access to the physical subject for whom an FST
measure is being calculated. All existing computer vision
work that has used FST measures has done so by having
human raters judge the skin tone of subjects in images [7],
[9], [10], [11], [16]. However, as this study has shown, the
face image lightness of the same subject varies greatly across
uncontrolled images. Because of this assessment technique,
we believe it is inaccurate to even describe the arrived at
quantifications in [7], [9], [10], [11], [16] as Fitzpatrick Skin
Types. These studies have measured something using an
image, but it was unlikely a good estimator of the FST
phenotype, and is almost certainly not FST as the term is
conceptualized in the medical community.

Third, even when FST types are calculated in manner
supported by the medical literature, as we have done here,
the six point self-reported FST is a poorer predictor of skin
tone than even the binary race categories self-reported by
the population in our study. We have shown that the appar-
ent aggregate relationship between FST and ground-truth
FALMs is mainly due to different proportions of people in
each race category selecting different FST values and a weak
relationship between FST and ground-truth FALMs within
each race category. We believe this is strong evidence that a
separate phenotypic measure should be used to assess skin
properties in the assessment of computer vision algorithms
generally and biometric performance in particular.

We summarize our findings with respect to Fitzpatrick
Skin Types as follows: Don’t use this measure to evaluate
computer vision applications, it’s unreliable, particularly
with people of color. The medical community agrees with
this assessment. In spite of this, if you choose to use FST
classifications in an evaluation of computer vision applica-
tions, you may only arrive at FST determinations by in-
person interview with a test subject. Other measures of
“FST” from images of test subjects are prone to significant
intra-subject, image-to-image variation in observed skin
tone and are not, in fact, FST. In general, when using an
ordinal scale to classify skin properties, changing the survey
instrument or changing the assigned categories changes the
scale. Care should be taken to explain how new scales were
developed and validated before they are used in scientific
studies. Finally, if you have chosen to use the FST ordinal
scale and chosen to calculate it correctly, be aware this
measure is a poor descriptor of skin tone and should not be
used as such in evaluations of computer vision applications.

Lastly, we show that poor estimates of skin tone can
lead to significant errors in interpretation of linear models
relating demographic variables to biometric performance, a
finding that is likely true of phenotypic measures in general.
In our study, ground-truth FALMs from the colormeter was
strongly correlated with race. When FALMs measured from
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images were used in a model fitting exercise, race replaced
lightness in optimal models of simulated biometric perfor-
mance even when simulated performance was not actually
related to race. This indicates that studies of demographic
effects on performance should either a priori determine
which correlated variables (e.g. race or lightness) should
be used in modelling or be cautious in their interpretation
of the optimal model. Minimizing error in measurement
of phenotypes is necessary to avoid confusion between
phenotypes and any correlated demographic groups.

ACKNOWLEDGMENTS

This research was sponsored by the Department of Home-
land Security, Science and Technology Directorate on con-
tract number W911NF-13-D-0006-0003. The views presented
here are those of the authors and do not represent those
of the Department of Homeland Security, the U.S. Govern-
ment, or their employers. The data were acquired using the
IRB protocol “Development and Evaluation of Enhanced
Screening” number 120180237, approved by New England
IRB. Data used in this research is available on the Maryland
Test Facility GitHub Page (github.mdtf.org).

REFERENCES

[1] H. Suresh and J. V. Guttag, “A framework for understanding
unintended consequences of machine learning,” arXiv preprint
arXiv:1901.10002, 2019.

[2] J. J. Howard, Y. Sirotin, and A. Vemury, “The effect of broad and
specific demographic homogeneity on the imposter distributions
and false match rates in face recognition algorithm performance,”
in Proc. 10-th IEEE International Conference on Biometrics Theory,
Applications and Systems, BTAS, 2019.

[3] K. Vangara, M. C. King, V. Albiero, K. Bowyer et al., “Character-
izing the variability in face recognition accuracy relative to race,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 0–0.

[4] P. Grother, M. Ngan, and K. Hanaoka, “Face Recognition Vendor
Test (FRVT) Part 3: Demographic Effects,” Tech. Rep., 2019.

[5] D. S. Ma, K. Koltai, R. M. McManus, A. Bernhardt, J. Correll, and
B. Wittenbrink, “Race signaling features: Identifying markers of
racial prototypicality among asians, blacks, latinos, and whites,”
Social Cognition, vol. 36, no. 6, pp. 603–625, 2018.

[6] C. M. Cook, J. J. Howard, Y. B. Sirotin, J. L. Tipton, and A. R.
Vemury, “Demographic effects in facial recognition and their de-
pendence on image acquisition: An evaluation of eleven commer-
cial systems,” IEEE Transactions on Biometrics, Behavior, and Identity
Science, vol. 1, no. 1, pp. 32–41, 2019.

[7] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accu-
racy disparities in commercial gender classification,” in Conference
on fairness, accountability and transparency, 2018, pp. 77–91.

[8] V. Muthukumar, T. Pedapati, N. Ratha, P. Sattigeri, C.-W. Wu,
B. Kingsbury, A. Kumar, S. Thomas, A. Mojsilovic, and K. R.
Varshney, “Understanding unequal gender classification accuracy
from face images,” arXiv preprint arXiv:1812.00099, 2018.

[9] K. Krishnapriya, V. Albiero, K. Vangara, M. C. King, and K. W.
Bowyer, “Issues related to face recognition accuracy varying based
on race and skin tone,” IEEE Transactions on Technology and Society,
vol. 1, no. 1, pp. 8–20, 2020.

[10] B. Lu, J.-C. Chen, C. D. Castillo, and R. Chellappa, “An exper-
imental evaluation of covariates effects on unconstrained face
verification,” IEEE Transactions on Biometrics, Behavior, and Identity
Science, vol. 1, no. 1, pp. 42–55, 2019.

[11] B. Wilson, J. Hoffman, and J. Morgenstern, “Predictive inequity in
object detection,” arXiv preprint arXiv:1902.11097, 2019.

[12] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman,
B. Hutchinson, E. Spitzer, I. D. Raji, and T. Gebru, “Model cards
for model reporting,” in Proceedings of the conference on fairness,
accountability, and transparency, 2019, pp. 220–229.
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