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Executive Summary 

 

This study was sponsored by the U.S. Department of Homeland Security (DHS) and 

conducted at the Maryland Test Facility (MdTF) as part of ongoing evaluations of 

biometric performance across demographics groups.  Using data gathered from the 

2018 Biometric Technology Rally, we show that commercial face, but not iris, 

recognition algorithms use features associated with race and gender to establish 

individual identity.  Here, we propose a first-of-its-kind method to quantify the extent 

to which different biometric algorithms exhibit this effect.  We discuss the 

implications of these findings in the context of equitable performance of face 

recognition in verification and identification use cases. 

 

We showed that face recognition similarity scores between different people who were 

the same race and gender tended to be higher than scores between different people 

who did not share those groupings.  We did this on five leading commercial face 

recognition algorithms.  We then developed and applied a conceptual framework to 

understand how this property of face recognition may affect the performance of face 

verification and identification systems and proposed a method of quantifying this 

effect in black-box commercial algorithms.  Finally, we performed analyses indicating 

that race and gender features can be removed from these systems without reducing 

performance below useful levels. 

 

Human faces contain different kinds of features, such as nose width, distance between 

the eyes, brow length, etc.   Combinations of these features have been shown to be 

effective at determining both individual identity and demographic information, such 

as race and gender.  However, some (but not all) of these features tend to be shared by 

members of demographic groups.  For example, male noses are, on average, shorter 

and broader than female noses.  Face recognition algorithms that rely on features that 

are shared within a demographic group will be more likely to incorrectly match people 

within that group.  Currently, the extent to which black-box commercial face 

recognition algorithms use gender and race features to determine identity requires 

further study to better understand impacts on the increasing number of deployments 

by government and industry. 

 

We found that all commercial face recognition algorithms in our test tended to assign 

higher similarity scores to different people that were the same race and/or gender.  We 

believe, in concurrence with evidence from the U.S. National Institute of Standards 



THE DHS S&T TECHNICAL PAPER SERIES, MAY 2021 

 

 

MAJOR 

TAKEAWAYS 

(CONT.): 

 

 

 

 

 

 

 

 

and Technology, that this is a general property of all currently tested face recognition 

algorithms.  However, we showed that only roughly 10% of face recognition similarity 

score variation could be attributed to race and gender sameness.  Moreover, when this 

information was ignored, we observed a decrease in overall algorithm performance, 

but also that algorithms were less likely to confuse individuals based on race and 

gender.  This suggests it is possible for face recognition algorithms to operate on face 

features that are unrelated to gender and race, albeit with somewhat lower recognition 

accuracy.  However, this is not the current commercial practice.  Using the conceptual 

framework developed by this research, we show why development of face recognition 

algorithms that ignore race and gender is necessary for equitable outcomes in large, 

one-to-many identification operations. We believe these findings have strong 

implications for the development, training, and deployment of more equitable face 

recognition algorithms. 
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Quantifying the Extent to Which Race and
Gender Features Determine Identity in

Commercial Face Recognition Algorithms
John J. Howard, Yevgeniy B. Sirotin, Jerry L. Tipton, and Arun R. Vemury

Abstract—Human face features can be used to determine individual identity as well as demographic information like gender and race.
However, the extent to which black-box commercial face recognition algorithms (CFRAs) use gender and race features to determine
identity is poorly understood despite increasing deployments by government and industry. In this study, we quantified the degree to
which gender and race features influenced face recognition similarity scores between different people, i.e. non-mated scores. We ran
this study using five different CFRAs and a sample of 333 diverse test subjects. As a control, we compared the behavior of these
non-mated distributions to a commercial iris recognition algorithm (CIRA). Confirming prior work, all CFRAs produced higher similarity
scores for people of the same gender and race, an effect known as “broad homogeneity.” No such effect was observed for the CIRA.
Next, we applied principal components analysis (PCA) to similarity score matrices. We show that some principal components (PCs) of
CFRAs cluster people by gender and race, but the majority do not. Demographic clustering in the PCs accounted for only 10% of the
total CFRA score variance. No clustering was observed for the CIRA. This demonstrates that, although CFRAs use some gender and
race features to establish identity, most features utilized by current CFRAs are unrelated to gender and race, similar to the iris texture
patterns utilized by the CIRA. Finally, reconstruction of similarity score matrices using only PCs that showed no demographic clustering
reduced broad homogeneity effects, but also decreased the separation between mated and non-mated scores. This suggests it is
possible for CFRAs to operate on features unrelated to gender and race, albeit with somewhat lower recognition accuracy, but that this
is not the current commercial practice.

Index Terms—Face Recognition, Iris Recognition, Performance Evaluations, Demographic Differentials, Technology Social Factors.

F

1 INTRODUCTION

DURING the period from 2015 to 2020, face recogni-
tion experienced enormous increases in commercial

investment, public interest, and public facing deployments.
In 2014, deep convolutional neural nets (DCNNs) applied
to face recognition achieved near human performance for
the first time [1]. By 2016, at least two Fortune 500 com-
panies began offering commercial facial recognition algo-
rithms (CFRAs) via their cloud platforms to the general
public [2], [3]. From 2015 to 2019, face recognition became
the predominant method by which individuals access their
personal devices, a list that now includes laptops, tablets,
and smartphones [4], [5]. Government use of this technology
also expanded during this period. In the travel environment,
government face recognition services identify international
travelers arriving to the United States [6] and also facilitate
ticketless international departures [7]. Face recognition has
also been adopted at the state and local level, particularly
for policing [8], [9]. Broadly, these deployments have led
to successes in identifying criminal suspects [10], [11] and
detecting fraud [12], but have also resulted in notable false
identifications [13], [14], [15].

• J. Howard, Y. Sirotin, and J. Tipton work at the Maryland Test Facility in
Upper Malboro, Maryland.

• A. Vemury works at the United States Department of Homeland Security,
Science and Technology Directorate in Washington, DC.

• Authors listed alphabetically. E-mail correspondence should be sent to
info@mdtf.org

The increased use of face recognition in the public do-
main has also resulted in additional scrutiny, particularly
around the topic of equitability and how this technology
performs across race and gender categories. In 2016, the
Georgetown Center for Privacy and Technology claimed
that “facial recognition algorithms exhibit racial bias” in part
due to over-representation of some demographic groups in
law enforcement galleries [16]. This was followed by a 2018
report from the American Civil Liberties Union (ACLU),
which claimed that publicly available face recognition soft-
ware had incorrectly matched 28 members of Congress to a
database of mugshot images [17] with false matches largely
constrained along racial categories.

In the scientific community, there were early reports
that CFRA performance varied for people based on their
demographic group membership [18], [19], [20]. Even after
the widespread application of neural nets to automated face
recognition, these effects have continued to be documented
by scientists [21], [22], [23], [24], [25], [26]. One type of
demographic variation observed is the tendency of CFRAs
to assign greater similarity scores to different individuals
that share gender and race categories. For example, compar-
ing images of women to images of other women produces
higher scores relative to scores produced when images of
women are compared to images of men [22], an effect
termed “broad homogeneity” [24].

While intuitive based on human perception, this prop-
erty of CFRAs can create undesirable behavior in many
identification scenarios. For example, if an identification
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gallery, such as a most-wanted list, skews predominantly
male, then men who are not in the gallery are more likely
to be misidentified when searched against that gallery than
women, solely on the basis of their male facial features.

To some, the notion that a CFRA would find males
more similar to other males as opposed to other females
may be the expected, even desirable, outcome. However,
others have pointed out that the combination of this effect
and demographically homogeneous galleries will lead to
unfair false positive identification rates [16]. In this study
we present evidence that, while broad homogeneity effects
appear to exist in nearly all currently tested CFRAs (a notion
also supported by Annex 5 of [22]), it does not have to be so.
We first document broad homogeneity effects in five CFRA’s
and one commercial iris recognition algorithm (CIRA). We
then use a novel technique to quantify and compare these
effects across black-box commercial algorithms. Finally, we
provide evidence that ignoring facial components that clus-
ter demographically similar imposter pairs, only results in
a partial reduction in the d-prime metric between mated
and non-mated score distributions. This suggests that it’s
possible for CFRAs to operate on features unrelated to
gender and race, albeit with somewhat lower recognition
accuracy, but that this is not the current commercial practice.

2 BACKGROUND AND SIGNIFICANCE

2.1 Face Features

The human face has many features that can be measured
to help establish identity. For example, intercanthal width
is the distance between the inner portion of the eyes, and
morphological nose width is the distance between the exte-
rior nostrils [27]. The relative positions of some of these facial
landmarks are shared by members of demographic groups.
For example, the male nose is shorter, broader, and more
projecting relative to females [28], [29] and people of Sub-
Saharan African ancestry tend to have broader noses than
people of European and East Asian ancestry [30], [31]. How-
ever, other face features and their combinations are unlikely
to be associated with gender or race. For instance, genetic
disorders can be associated to specific common changes
in face shape [32], [33], [34]. Likewise, features thought
to be formed stochastically during development, such as
iris texture utilized by iris recognition (IR) algorithms are
unique not only to specific individuals, but to each eye [35].
Indeed, recent work indicates that gender and race features
in face images can be manipulated while identity informa-
tion relevant for face recognition is maintained [36], [37].

2.2 Fairness Criteria with respect to False Match Rate
in Face Recognition

All biometric samples inevitably share some common pat-
terns. Biometric samples come from biological systems that
may share some features due to common genetics, envi-
ronment, or simply due to chance. When two biometric
samples from different people are similar enough, biometric
algorithms may label the two samples as matching, produc-
ing a false match. How often this error occurs for a given
algorithm, on a given subset of people, is measured as the
algorithm’s false match rate (FMR).

The fairness1 doctrine of disparate impact is relevant
when considering demographic performance differentials in
face recognition. Disparate impact occurs when the outcome
of a process has different error rates for different groups,
regardless of if those differences were unintentional or if
the process was aware of the individual’s group member-
ship [40], [41]. There are at least two different criteria for
what might be considered a fair face recognition algorithm
in relation to FMR. The first is that FMR measured within
specific groups should be equal for each group but that
FMR measured between different groups can still take a
different value. For example, a FMR of 1 in 1,000, when
white males are compared to other white males and an equal
FMR when black males are compared to other black males
would satisfy this condition (FMR(WM,WM) == FMR(BM,BM)).
However, under this criterion, FMR between black males
and white males, for example, may be other than 1 in
1,000, presumably lower (FMR(WM,BM) < FMR(WM,WM)). In
this scenario, a heatmap matrix of false match rates between
various cohorts would appear as shown in Fig. 1A. For the
purposes of this research, we call this criteria the “specific
homogeneity fairness criterion.”

A second possible face recognition fairness criterion,
with respect to FMR, is that all within and between group
FMRs should be equal. Under this condition the false match
rate between white males when compared with other white
males would equal both the false match rate when black
males were compared with other black males and the false
match rate when black males were compared to white males
(FMR(WM,WM) == FMR(BM,BM) == FMR(BM,WM)). In this
scenario, a heatmap matrix of false match rates between
various cohorts would appear as shown in Fig. 1B. For the
purposes of this research we call this criteria the “broad
homogeneity fairness criterion.”

Fig. 1. Example heatmap matrices of false match rates within and
across demographic cohorts using the (A) specific homogeneity fairness
criterion and (B) broad homogeneity fairness criterion.

1. Fairness is a broad concept. The term itself does not currently have
a concise technical definition [38], [39]. We use the term fairness criteria
in the sense that these metrics relate to the topic of fairness, as they are
used to reason about differential error rates. We believe these criteria are
one element that can help inform perceptions of fairness more broadly.
We do not attempt, nor do we believe it is possible, to measure fairness
in the broader social and perceptual context with studies of algorithm
outcomes alone.
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2.3 The Consequences of Selecting Features Related
to Demographic Groups, Imbalanced Galleries, and
Identification Workflows in Face Recognition

Similarities in facial features can be related to demographics,
including gender and race (Section 2.1). However, gender
and race similarity alone are typically not enough to in-
crease CFRA false match rates to unacceptable levels. Con-
sequently, use of features related to gender and race has not
been seen as a problem in the machine vision community.
Nonetheless, small increases in one-to-one false match rate
can lead to appreciable gains in one-to-many false posi-
tive identification rates, particularly when matching against
large galleries [22]. This raises legitimate concerns about
the fairness of CFRAs when matching against homogeneous
galleries in law enforcement applications [16]. It is therefore
important to understand the degree to which gender and
race determine similarity scores produced by CFRAs.

A face recognition identification operation involves a
one-to-many comparison of a unknown face probe (one) to
a gallery composed of faces of known individuals (many).
If the probe subject is not present in the gallery and any
candidate is returned at a score above some threshold t,
a false positive identification has occurred. How often this
error occurs for a given algorithm, on a given subset of
people, is known as the false positive identification rate
(FPIR).

One argument for using the broad homogeneity fairness
criterion (Fig. 1B) is that a biometric system that achieves
equal FMR rates within, but not between groups, in one-
to-one verification applications (i.e. satisfies the specific
homogeneity fairness criterion; Fig. 1A) can still experience
disparate impacts in one-to-many identification operations.
Assuming each comparison in a one-to-many search is in-
dependent, the likelihood of a false positive identification
occurring can be modeled as a function of the FMR of the
underlying algorithm and the size of the search gallery (N ),
according to Equation 1.

FPIR(FMRG, N) = 1 − (1 − FMRG)N (1)

To illustrate the previous point, consider the case where
a face recognition algorithm has achieved equal FMR rates
within two demographic cohorts. For example, each intra-
cohort FMR is 5.5e-5 and each cross cohort FMR is lower at
1e-7. For the purpose of this example, we will limit cohorts
of interest to male (M) and female (F). This condition is
shown in Fig. 2 (inset).

Now consider an unknown probe face image is searched
against a gallery containing face images of 10,000 known
individuals, but which is imbalanced such that females
outnumber males with a ratio of 9:1. Expanding Equation 1
under the assumption that all comparisons are independent,
but that within and between group FMR values differ, we
can show that the likelihood of a female or male experi-
encing a false positive identification against this gallery can
be calculated according to Equation 2. This is depicted in
Fig. 2 as a function of the number of independent gallery
comparisons performed.

FPIRX = 1 − (1 − FMR(X,F ))
NF (1 − FMR(X,M))

NM (2)

Fig. 2. FPIR for males and females as a function of the number of in-
dependent gallery comparisons given the specified gallery composition.
The inset shows the FMR values used to generate the curves according
to Equation 2. Note equal within-group FMR values lead to equal FPIR
values for a balanced gallery (Composition: 50% female), but un-equal
FPIR values for an imbalanced gallery (Composition: 90% female) [42].

If the probe image is of a female subject, they will expe-
rience a false match rate of 5.5e-3 against the 9,000 females
in the gallery and a false match rate of 1e-7 against the 1,000
males. Using our numbers, we arrive at FPIRF = 39.0%.
The situation is reversed for males with a resulting FPIRM =
5.4%. This disparate outcome in false positive identification
rates exists despite completely equal within-cohort FMR
(thus satisfying the specific homogeneity fairness criterion).
Disparate outcomes in FPIR can be expected to occur in any
face recognition algorithm that assigns greater similarity
scores to individuals that share demographic characteristics,
i.e. in any face recognition algorithm that does not satisfy
the broad homogeneity fairness criterion.

2.4 Evaluation and Mitigation of Demographic Differen-
tials in Commercial Algorithms versus Academic Algo-
rithms
Face recognition algorithms and biometric recognition algo-
rithms in general can be categorized as either commercial
or academic. Much of the scientific literature, particularly
around demographics in face recognition, focuses on aca-
demic algorithms [20], [43], [44], [45]. The implementation
details of academic algorithms are usually published and
the structure of their facial templates understood. How-
ever, leading commercial face recognition algorithms have
superior performance relative to available academic algo-
rithms [22] and come with the legal, financial, and opera-
tional support offered by commercial entities. Commercial
face recognition algorithms are therefore often used by
industry and government to make real-world decisions that
may have a societal impact [7], [8]. Consequently, techniques
to evaluate fairness and mitigate bias in commercial algo-
rithms are required.

However, unlike academic algorithms, commercial al-
gorithms are “black-boxes,” meaning details of template
structure [45] or face recognition algorithm architecture [20],
[43] cannot be used in such evaluations and mitigations.
The only available information for evaluating commercial
face recognition algorithm performance are the similarity
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scores they produce when comparing face images. Mitiga-
tion techniques similarly would only have this information
available to them. This makes it necessary to develop meth-
ods of measuring and mitigating demographic differentials
that rely only on these similarity scores, and not training,
template data, or mechanistic algorithm insight.

3 METHODS

3.1 Dataset

Data used in this study were collected during the 2018 DHS
S&T Biometric Technology Rally [46]. Biometric samples
were collected from 333 diverse test subjects on 11 different
face and five iris biometric acquisition systems. All acqui-
sition system were commercially available systems from
commercial biometric companies, available for purchase in
2018.

The test described in [46] produced 3,324 face and 1,414
left iris probe images (all devices failed to acquire images
on some subjects). For this study, these probe images were
compared to galleries of 1,205 face images and 1,083 left
iris images previously gathered from the same subjects over
a five-year period from 2012-2018. Five different CFRAs
and one CIRA were used to independently generate bio-
metric similarity scores. In total, this operation produced
21,558,281 similarity scores which form the basis of this
study. All matching systems were commercially available
systems from established biometric companies, available
for purchase in 2019. To comply with information sharing
agreements between the test organizers and technology
providers, all algorithm names are aliased in this report as
“face1”, “face2”, “face3”, “face4”, “face5”, and “iris.” Each
algorithm produced an arbitrarily scaled similarity score for
pairs of face or iris images. Larger scores corresponded to
a greater likelihood that the two images belong to the same
subject.

Demographic information, including race and gender,
was self-reported by each of the 333 unique subjects (Fig. 3).
Most subjects in our sample self-identified as Black or
African American, or White. For this reason, comparisons
of same gender and race versus different race and gender
groups was restricted to these demographic groups.

Fig. 3. Number of volunteers by self-reported demographic race (B,
Black or African American; W, White; O, all others) and gender (F,
Female; M, Male).

3.2 Analysis Techniques

3.2.1 99th Percentile Non-Mated Score
Biometric false match rates are driven by the behavior of the
tail of the non-mated distribution. We quantified the char-
acteristics of this tail using shifts in the 99th percentile score
of the imposter distribution, similar to [24]. In Equation
1, S(99,m) is the subject-specific 99th percentile non-mated
score, I(n,m) is the ordered set of non-mated similarity
scores for subject m, and n is that subject’s 99% highest non-
mated similarity score.

3.2.2 Principal Component Analysis
The similarity scores described in Section 3.1, were arranged
into a matrix, per recognition algorithm, where each entry
at row i and column j represented the average similarity
score between subjects i and j for each of our 333 subjects.
All score matrices were symmetric, with the diagonal of
each matrix corresponding to the average mated score for
each subject. To understand the individual variations with
the strongest association to subject similarity, we performed
principal components analysis (PCA) on the matrix pro-
duced by each algorithm. PCA is a linear dimensional-
ity reduction technique. It can be used to transform high
dimensional data into a series of principal components
(PCs) in such a way that the highest level of variance is
found on the first component, PC1. Each subsequent PCk

is orthogonal to the preceding and explains less variance
(σ2

1 > σ2
2 > ...σ2

k > ... > σ2
n ). At some PC number k

the full or a sufficient amount of the cumulative variance
(
∑

k σ
2
k) has been explained by the PCs. The remaining n−k

PCs can be discarded, thus accomplishing dimensionality
reduction. In this study, PC decomposition of each score
matrix and subsequent operations were performed using
built-in functions available in the R statistical programming
language [47].

Prior work in demographics has measured performance
variation in face recognition algorithms by comparing score
distributions, error rates at fixed thresholds, thresholds re-
quired to obtain equal error rates, and area under ROC
curves (AUC) [18], [19], [21], [22], [24]. PCA has several
advantages over those approaches. First, PCA allows score
matrices of different biometric algorithms to be compared
using common units of explained variance. Scores of dif-
ferent algorithms are scaled arbitrarily and error rates de-
pend critically on thresholds, which must be determined
separately for each algorithm. While AUC offers the abil-
ity to compare overall algorithm accuracy as a function
of demographics, modern face recognition algorithms may
make no errors on some datasets, producing uniform AUC
(AUC = 1). Our measure allows algorithm comparisons in
the absence of errors. Finally, PCA allows us to reconstruct
the score matrix after the removal of select PCs, which we
will leverage to analyze the impact on score distributions
when certain principal components are removed.

3.2.3 Demographic Clustering
Each PC computed as described in Section 3.2.2 corresponds
to a pattern of score variation across 333 subjects. The
similarity of face features between subjects in our dataset
determines CFRA similarity scores. The PCs that explain
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the most variance for each algorithm correspond to the
shared feature patterns that are most heavily weighted by
each algorithm in determining similarity. We assessed the
degree of association of these features with gender and race
by measuring the distribution of these groups across each
PC. Specifically, we measured the degree of demographic
clustering by calculating a clustering index Ck for each PCk

by taking the ratio of within group deviation from the mean
to overall deviation from the mean across all subjects i in
our sample according to Equation 2, where D is the set of
subjects belonging to a specific demographic group and xi
is the value for subject i on the PC.

Ck = 1 −
∑

D

∑
i∈D(xi − x̄D)2∑
i(xi − x̄)2

(3)

We assessed whether the clustering index value for each
PCk was statistically significant by comparing the calcu-
latedCk values, which rely on the variance between subjects
in real demographic groups (σ̄2

D,k = 1
N

∑
D

∑
i∈D(xi −

x̄D)2), to the 99th percentile of the distribution of Cnull,
where Cnull is calculated by 500 shuffles assigning subjects
to randomized demographic groups D. Given 333 PCs with
no significant clustering, this criteria would, by chance label
3 as clustered.

Finally, to assess the overall demographic clustering for
an algorithm, we measured the proportion of total variance
in scores explained by demographic clustering according to
Equation 4 where σ2

k is the variance of PCk, σ2
tot is the total

variance across the entire dataset, and Ck is as described in
Equation 3.

Ctot =
1

σ2
tot

∑
k

σ2
kCk (4)

3.2.4 D-Prime Analysis
Since the PCs of algorithm similarity score matrices are or-
thogonal, it’s possible to discard certain PCs and reconstruct
score matrices as if these components did not exist. The
reconstructed score matrices will have different distribu-
tions of mated (diagonal) and non-mated similarity (non-
diagonal) scores. To quantify the separation between these
two distributions, and the impact of this reconstruction
step, we use the d-prime metric [48]. Previous studies of
demographic effects in face recognition have also measured
broad relative shifts in mated and non-mated distributions
using d-prime [44]. We calculated the d-prime according to
Equation 5 where µ and σ2 are the mean and variance,
and M and NM refer to the mated and the non-mated
distributions of average similarity scores, respectively.

d′ =
µM − µNM

0.5
√
σ2
M + σ2

NM

(5)

4 RESULTS

4.1 Consistent Effects of Broad Demographic Homo-
geneity across Commercial Face Recognition Algo-
rithms
Prior work has shown, using a single CFRA, that the tail of
the non-mated similarity score distribution between subjects
of the same gender and race is higher than the tail of

the distributions between subjects of different genders and
race [24]. All five CFRAs in our sample reliably followed this
broad homogeneity pattern (Fig. 4) Conversely, no effect of
gallery homogeneity was observed for the CIRA.

Fig. 4. Group homogeneity strongly modulates the tail of the non-mated
distribution. Each facet corresponds to a different biometric algorithm
and plots the 99th percentile of the non-mated score distribution (Sec-
tion 3.2.1) across individuals. Scores on the y-axis for each algorithm
are divisively normalized such that scores at the 1:10,000 threshold
(red line) get a value of 1. Groups along the x-axis are as follows: DD,
different gender and race; DS, different gender and same race; SD,
same gender and different race; SS, same gender and race.

4.2 Face Recognition Score Matrices have Block-
Diagonal Demographic Structure

Faces of different pairs of subjects have different features in
common, only some of which are relevant to face recog-
nition algorithms (Section 2.1). The patterns of similarity
scores for individuals known to share various features can
reveal how these features are weighted by the algorithm
in calculating face similarity. Variation in CFRA similarity
scores is driven both by face features as well as by the
properties of the images used in the comparison [23]. To
isolate the effect of face features for each algorithm, we
computed 110,889 average similarity scores between each
unique pair of the 333 subjects in our sample. Fig. 5 plots
these average subject-to-subject similarity scores as a “score
matrix” with rows and columns sorted based on the gender
and race of each subject in our dataset (Section 3.2.2). Each
score in this matrix is an average of 72 similarity scores
between probe and gallery face images of the subjects and
28 similarity scores between probe and gallery left iris
images of the subjects. As expected from Fig. 5, CFRA
score matrices showed a clear block-diagonal structure with
higher similarity scores for subject pairs within the same
demographic group than between subjects in different de-
mographic groups. This structure indicates the presence
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of correlations in the data that could be leveraged by a
dimensionality reduction technique, such as PCA.

Fig. 5. CFRAs produce higher similarity scores within demographic
groups. Each facet shows a raster plot of the average similarity scores
produced for each pair of individuals in our sample. To aid visualization,
scores have been normalized such that the non-mated scores have
µ = 0 and σ = 1. Dashed lines separate demographic groups. Note
block diagonal structure present for all CFRAs, but not for the CIRA

4.3 Face Recognition Algorithms Cluster Individuals
by Race and Gender

Fig. 5 and Fig. 4 suggest that all CFRAs show homogeneity
effects. However, it is difficult to compare the magnitude
of the effects across algorithms because similarity scores
returned by each black-box CFRA are scaled arbitrarily. We
used PCA (Section 3.2.2) to reduce the dimensionality of
the similarity matric (Fig. 6) and isolate the contribution of
particular components to the overall variation in the data.

After applying PCA, each PC corresponds to a score
pattern across individuals in our sample. Assuming that
score patterns are related to the face features of individ-
uals, those patterns that explain the largest proportion of
similarity score variance should therefore separate subjects
based on the relative contribution of this feature to score
variance. For instance, if similarity scores were determined
solely by the relative width of the nose, then our subjects
would be ordered based on nose width along the first PC
of the score matrix. If, on the other hand, scores were not
related to nose length, but rather related to the intercanthal
width, then subjects would be ordered by distance between
the eyes and not by nose length. Though we cannot know
the important features used by the black-box CFRAs, we
can examine the extent to which the order of subjects along
each PC corresponds to demographic groups. Further, since
each PC has a known contribution to overall score variance,
we can quantify the extent to which known demographic
categories determine the similarity scores.

Fig. 6. Visualization of select principal components. A. Component 1
for algorithm face1 shows distinct clustering by demographic group, but
component 4 does not. B. Components 1 and 2 for algorithm iris do
not show demographic clustering. C. Distributions of component values
visualized in association with different demographic groups.

4.4 Comparing Demographic Clustering Across Com-
mercial Face Recognition Algorithms

We quantified the clustering illustrated in Fig. 6 by comput-
ing a clustering index for each PC (Section 3.2.3, Equation 3).
The clustering index is bounded between 0 and 1, with zero
signaling that the variance within each gender and race
group is the same as overall variance. A clustering index
of 1 indicates that there is no variance across individuals
within each gender and race group.

Fig. 7 shows the clustering index for the first ten PCs
of each algorithm. All five CFRAs showed statistically sig-
nificant clustering for the first two PCs according to the
test described in Section 3.2.3. Additionally, the first two
PCs explained between 12% and 27% of the variance in
similarity scores, depending on CFRA. None of the first
ten PCs had significant demographic clustering for CIRA
similarity scores.

To compare the extent to which different algorithms
exhibited demographic clustering, we next measured the
clustering index across all PCs (Section 3.2.3, Equation 4).
On average, we found demographic clustering accounted
for 10% of total CFRA score variance, ranging from 6% for
“face4” to 14% for “face3” (Fig. 7B). Clustering accounted
for less than 2% of the variance in similarity scores produced
by the CIRA. Of the 333 PCs calculated for the CFRAs, on
average 14 showed significant clustering, compared with
one for the CIRA (Fig. 7C). Components with no significant
clustering accounted, on average for 62% of total score
variance for CFRAs. These components reflect face feature
variances that are not associated with gender or race in our
sample.
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Fig. 7. Quantification of demographic clustering across algorithms. A. Stem plot of the demographic clustering index computed for each component.
Filled circles correspond to components with statistically significant clustering (Section 3.2.3). Asterisks mark components visualized in Fig. 6. B.
The total proportion of similarity score variance explained by demographic clustering for each algorithm. C. Number of principal components with
statistically significant clustering for each algorithm α = 0.01 (3 are expected by chance at this α value)

4.5 Estimating the Effects of Ignoring Demographically
Clustered Features

We estimated the potential performance impact of having
CFRAs ignore face features associated with gender and
race. To do this, we reconstructed average similarity score
matrices after removing all components with significant
clustering and then compared the effects on the mated
and non-mated distributions using the d-prime statistic
(Section 3.2.4). Fig. 8 shows the distributions of average
similarity scores in the original and reconstructed score ma-
trices. As expected, removing PCs with significant cluster-
ing brought the non-mated distributions of average scores
between subjects of the same gender and race (SS) closer
to the non-mated average scores between subjects of dif-
ferent genders and races (DD). However, the operation
also brought the overall mated and non-mated distributions
closer together, decreasing d-prime. Nonetheless, even after
reconstruction, d-prime values remained high for most algo-
rithms. For example, if the range of original d-prime values
(6.90 to 18.17) is considered to be the “useful range” (i.e. the
range useful for commercial applications of face recognition
technology), then 5 of 6 algorithms would still be in the
useful range after reconstruction (5.22 to 12.70). Indeed, the
leading CFRA after reconstruction, maintained a d-prime
value larger than all other CFRAs before reconstruction.
This suggests that ignoring face features associated with
gender and race may maintain CFRA performance within
a commercially useful range.

5 DISCUSSION

5.1 Sample Size and Statistical Considerations

In this study, we tested whether algorithms cluster individu-
als based on race and gender in principal component space.
Our null hypothesis was that there is no clustering. The
statistical error of primary concern in this setting is a false

positive, i.e. detecting significant clustering by chance when
the effect does not actually exist. Consequently, we use a
stringent significance level (α) of 0.01, meaning we have a
1% chance of detecting clustering by chance. Our sample
size of 333 individuals was sufficient to detect significant
clustering above chance in all CFRAs under test and to fail
to detect significant clustering above chance level in the
CIRA. While our sample was sufficient for detecting these
effects in CFRAs, future studies employing larger samples
may detect smaller effects or reveal additional interactions
between demographic factors and clustering.

The aims of our study are distinct from biometric evalu-
ations that include images of millions of individuals [22].
Tests such as [22] aim to find performance, particularly
false match and non-match error rates, differences between
algorithms. The null hypothesis in these settings is that
no performance differences exist. The statistical error of
primary concern is a false negative, i.e. failing to detect a
true difference between algorithm A and algorithm B. Given
the fact that biometric error rates can be extremely small,
large sample sizes are needed to increase the power of the
test (1 − β), allowing for low false negative rates. Indeed,
future studies of this sort may be needed to compare the
magnitude of demographic effects between algorithms but
the effect sizes we document in this study are of sufficient
magnitude that our sample size is adequate

5.2 Summary of Findings

In this paper, we discuss the extent to which five commercial
face recognition algorithms (CFRAs) and one commercial
iris recognition algorithm (CIRA) utilize face features as-
sociated with gender and race in determining individual
identity. We first show that, non-mated similarity scores of
all five CFRAs were higher between subjects of the same
gender and race. We go on to quantify the proportion of
score variance explained by gender and race information
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Fig. 8. Performance impact of removing components with significant
demographic clustering. Each facet shows the empirical distributions
of mated and non-mated scores in the original score matrix and after
dimensionality reduction. Distributions are color coded as: SS, same
gender and race; DD, different gender and race; M, mated. Black line
shows the overall non-mated distribution. The SS and DD non-mated
distributions include only individuals identifying as “Black” or as “White”.
Values of d’ are based on the comparison of the mated distribution
(M) to the full non-mated distribution (black line). Note that SS and DD
distributions for reduced scores are closer together. Note also that M
and the overall non-mated distributions (black line) move closer in the
reduced face recognition matrices as quantified by d’.

across CFRAs using principal component analysis and show
that some principal components cluster individuals by race
and gender whereas most do not.

Use of face features associated with gender and race
by CFRAs creates concerns regarding the fairness of these
algorithms in some applications. Recent work by privacy
groups [16] highlighted the fact that law enforcement face
image galleries can be demographically homogeneous, with
African American males comprising a majority of the faces.
The demographic clustering documented in this research
means that performing identifications against such galleries
using images of out-of-gallery Black males would yield
higher rank-1 similarity scores relative to White females.
This practice could be seen as running contrary to a central
fairness doctrine known as disparate impact [40], [41] (see
Section 2.2). Additionally, to the extent that our sample of
CFRAs and the sample tested in Annex 5 of [22] are rep-
resentative, it would appear this condition exists when any

current CFRA is used to search against a large homogenous
gallery.

However, our research also shows that this disparate im-
pact based on race and gender is likely avoidable. We found
that most variation in CFRA similarity scores is not asso-
ciated with race and gender. Further, separation between
mated and non-mated score distributions reconstructed ex-
clusively using PCs that do not cluster individuals by race
and gender was only modestly reduced, suggesting CFRAs
can maintain acceptable performance even when ignoring
face features associated with race and gender. Indeed, recent
work suggests that demographic features can be removed
from face images while maintaining subsequent face recog-
nition [36], [37]. This is what has long been observed in iris
recognition. The periocular images used in iris recognition
contain both the iris texture used for identification and
the surrounding facial imagery. As such, they bear features
related to demographics and both humans and algorithms
can readily identify race and gender from periocular im-
ages [49], [50], [51]. Nonetheless, iris recognition algorithms
based on iris-codes do not utilize these features in making
identity determinations [35], a property likely closely linked
with their ability to distinguish the irises of monozygotic
twins [52].

5.3 Implications and Future Work
Our comparison between face and iris algorithms demon-
strates some important points. First, it shows that some
features of the face used by CFRAs do not carry obvious
race and gender information. Second, it demonstrates an
existence proof that it may be possible to select only these
features and still perform accurate facial identifications.
However, this does not appear to be the current commercial
practice. One possible reason for this is that the DCNN tech-
nology that underpins most facial recognition algorithms,
post-2014, maximizes recognition performance based on all
available information rather than select features that have
desirable behavior.

Since 2014, DCNNs have revolutionized face recogni-
tion technology, driving down error rates and supporting
increasing technology deployment. Our work suggests that
the gains made by the top performing algorithms have been
so substantial that a modest reduction in performance from
ignoring race and gender features may now be a worthwhile
tradeoff to obtain, not only commercially useful, but also fair
identity systems.

DCNN approaches to object classification have been
shown to take “short-cuts” when accomplishing a task. For
example, using correlated but ultimately spurious features
in image data to arrive at a classification determination [53],
[54]. Regardless of root cause, these effects are large enough
in current CFRA’s to be observed with relatively small
populations. This is a positive in the sense that large image
datasets are not required to study this issue, but it is also
discouraging that these effects exist at this magnitude. Iris
recognition developers considering a migration to DCNN
technology should carefully evaluate their results for similar
demographic effects.

Our research suggests prudence when using current
CFRAs when performing identifications against large, ho-
mogeneous galleries and points to a need for audits of
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operational systems to measure the extent to which the
differential performance demonstrated here leads to dif-
ferential outcome in operational use. Human review with
orthogonal information may mitigate such occurrences.

Developing demographically-blind CFRAs that explic-
itly ignore face features associated with race and gender
will help maintain fairness as use of this technology grows.
This is fundamentally different than striving for equal false
match error rates within demographic groups and lower
false match rates between groups. Achieving the specific
homogeneity fairness criteria, i.e. FMR within males equals
FMR within females and is greater than FMR between males
and females (see Figure 1A), only ensures that identification
error rates will be equal if two, improbable conditions are
met. First, the number of individuals in the identification
gallery that belong to each demographic cohort must be
the same. This is unlikely to ever be the case across all
possible demographic groups (male, female, white, black,
young, old, etc.). Second, even if cohort parity is achieved,
un-equal identification error rates for members of different
demographic groups would still occur in systems where
individuals are matched against a gallery independent of
their demographic group membership because of differ-
ences between homogeneous and heterogeneous FMRs, i.e.
the FMR within males is greater than the FMR between male
and female individuals. Thus, implementing accurate group
detection and within-group-only matching would also be
required, a practice not currently in wide use and prone to
classification errors.

The most viable solution to this disparate impact in
identification scenarios is to develop CFRA’s that satisfy
the broad homogeneity fairness criteria we have described
here (see Figure 1B). This would effectively ensure that
individuals are not spuriously matched to a gallery on the
basis of their race or gender. We believe that reducing broad
homogeneity effects, with the ultimate goal of achieving the
broad homogeneity fairness criteria, should be a major focus
for entities using or creating face recognition technology in
the future.
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