U.S. Department of Homeland Security

SCIENCE AND TECHNOLOGY DIRECTORATE

Feature Vector Clustering – A Step Toward Fixing Broad Homogeneity Effects

John J. Howard & Yevgeniy B. Sirotin Identity and Data Sciences Laboratory at the Maryland Test Facility Arun Vemury Lead Biometric and Identity Technology Center DHS Science & Technology Directorate

November 2022

Disclaimer

- This research was funded by the U.S. Department of Homeland Security, Science and Technology Directorate on contract number 70RSAT18CB000034.
- This work was performed by the Identity and Data Sciences Laboratory team at the Maryland Test Facility.
- The views presented here are those of the authors and do not represent those of the Department of Homeland Security, the U.S. Government, or their employers.
- The data used in this research was acquired under IRB protocol or is publicly available non-PII data.

The Third Wave of Biometrics

Faces are Different for (at least) Two Reasons

- Faces are **genetic**, iris and fingerprint characteristics are determined during development.
 - To us, individuals look more like their parents, siblings, and those that share racial and gender categories.
- Humans have an **innate ability** to perform face recognition tasks, not so with iris and fingerprints.
 - Humans have dedicated brain areas that process faces quickly
 - This was an important function for human evolution
 - Mates, Friends, Foes, Family members
 - Other primates have a similar capability
 - Intuitively perceive same-gender and same-race faces as more similar
 - We even know the exact part of the human brain dedicated to face processing.
 - Evolved to recognize familiar individuals within small social groups (25-100)
 - Prosopagnosia "face blindness"

Demographic Effects Exist, Our Understanding of Them may be Clouded.

> It may seem natural to us that face recognition "clusters" people based on race and gender <

Iris recognition false positives were random relative to race and gender

Face recognition

80% of face recognition false positives were between people of the same race and gender

Apples and Apples or Apples and Oranges?

> All of these "errors" are called "false matches", but those on the right are different than those on the left <

Iris recognition false positives were random relative to race and gender

Face recognition

80% of face recognition false positives were between people of the same race and gender

Subjects consent for use of their image in publications was obtained

Problem #1 - This Makes Adjudicator Jobs Harder & Slower

- White et. al "Error Rates in Users of Automatic Face Recognition Software"
- 50% 60% errors rates
- If ability of the human to correct the error is the distinguishing factor, within group false match is not the same as an out group false match

Problem #2: This Can Impact "Fairness"

- The "watchlist imbalance effect"
 - Howard et. al (2021)
 - Drodowski et. al (2021)
- In the presence of "broad homogeneity", if you have a watch-list gallery of majority white males:
 - An innocent white male has a higher likelihood of a false positive..
 - ... than a similarly innocent member of a different demographic group
- If impact on 1:N fairness is the distinguishing factor, within group false match is not the same as an out group false match

Problem #3 – Overly Optimistic Security

- Imagine a system that matches people to their driver's license photo
- The system designer sets a FMR threshold so that the odds of someone stealing someone else's driver's license and getting away with it are 1 in 1,000 (global FMR)
- But people wouldn't try to assume a random face
- The within group FMR is much lower, two orders of magnitude by some estimates
- What you thought was a 1 in 1,000 FMR, may be more like 1 in 10
- Mismatch between what computer scientists think is "zero-effort" (all faces) and what an imposter thinks is "zero-effort" (finding faces of a similar gender, race, and age).
- If estimating real world error rates is the objective, within group false match is not the same as an out group false match

Broad Homogeneity – A Note on Prevalence

race, gender, and age categories.

- We coined the term "broad homogeneity" to describe this "sameness" effect 2019
- We showed this effect exists in one commercial face recognition algorithm

This is (likely) (currently) a Universal Feature of Face Recognition

- We first highlighted this in 2019 using one commercial algorithm
- NIST subsequently confirmed this exists in all 138 algorithms
 - NIST FRVT Part 3: Demographics Annex 5.

Technology

But There May be Solutions

- **IF** we recognize this as a problem..
- We may be able to address it
- Estimated 6 14% of face information content clustered by race and gender (2021).

DHS S&T Technical Paper Series

Quantifying the Extent to Which Race and Gender Features Determine Identity in Commercial Face Recognition Algorithms

> John J. Howard Yevgeniy B. Sirotin Jerry L. Tipton

The Maryland Test Facility, Identity and Data Sciences Lab

Arun R. Vemury

The U.S. Department of Homeland Security

But There May be Solutions

- IF we recognize this as a problem..
- We may be able to address it
- Estimated 6 14% of face information content clustered by race and gender (2021).
- Showed a method to **remove this clustering** improved "fairness" across five different fairness measures (2022).

	Fac	e Recognition Algorithms
Appeared in 26th International Confer ICPR 2022), Fairness in Biometrics V August 202 Disparate Impact in Facial from the Broad Homogen Study and Method	Vorkshop, Montreal, Quebec, 2. l Recognition Stems eity Effect: A Case	John J. Howard Yevgeniy B. Sirotin Jerry L. Tipton <i>The Maryland Test Facility,</i> Identity and Data Sciences Lab
John J. Howard ^{*1} , Eli J. Laird ^{*†1} , a The Identity and Data Sciences Lab at The Max {elaird, jhoward, ysiroti	ryland Test Facility, Maryland, USA	Arun R. Vemury Repartment of Homeland Security
Abstract. Automated face recognition a of face images that are compared to other e ity score between the two originating face also known as feature vectors, contain refeatures. Some of these facial features, but resemble each other across different subjects	ncodings to compute a similar- images. These face encodings, presentations of various facial it not all, have been shown to	

DHS S&T Technical Paper Series

Ouantifying the Extent to Which Race and Gender

Features Determine Identity in Commercial

What data did we use?

Data

- Three of face samples collected from the 2018-200 Biometric Technology Rallies:
 - S1 demographically balanced training set
 - S2 disjoint test set
 - S3 mated pairs to subjects in S1
- Two algorithms
 - ArcFace pre-trained on MS-Celeb-1M
 - ArcFace pre-trained on Glint 360k
- Requirement for white box template structures

Dataset	Subjects (Samples) Black Female Black Male White Female White Male							
	Black	$\mathbf{Fe} \mathbf{ma} \mathbf{le}$	Black	Male	White	Female	White	Male
S1	150	(150)	150(150)	150	(150)	150(150)
S2	50	(50)	50(50)	49	(49)	43 (43)
S3	106	(300)	117 (339)	126	(321)	117 (278)

• **Goal:** Given a matrix V of face recognition **feature vectors**, identify components of those vectors that exhibit demographic clustering.

• Process:

- SVD on normalized feature vector matrix, creates subject specific space (U) and a feature space (W^T)
- Calculate clustering index (C_k)
- Identify components in U with $C_k > 99^{th}$ percentile of the bootstrapped C_k distribution

$$C_{k} = 1 - \frac{\sum_{D} \sum_{i \in D} (u_{i} - \bar{u}_{D})^{2}}{\sum_{i} (u_{i} - \bar{u})^{2}}, \quad k, i \in \{1, ..., n\}$$

Comp.1

 $\hat{V} = U \Sigma W^T$, where $U \in \mathbb{R}^{n \times n}$, $\Sigma \in \mathbb{R}^{n \times p}$, $W^T \in \mathbb{R}^{p \times p}$

- Given we found *r* components in the *U* matrix with statistically significant clustering
- Remove *r* columns from *W* which correspond to the *r* clustered components in *U*,
 - Leaving $\widehat{W} \in \mathbb{R}^{p \times m}$, where m = p r
- Define de-clustering transform $\widehat{W}\widehat{W}^T$

- Can apply $\widehat{W}\widehat{W}^T$ to the set of feature vectors it was learned on
 - $\dot{V} = V \widehat{W} \widehat{W}^T$
 - Q1: How demographically "fair" are comparison scores generated from \dot{V} versus V?
- Can apply \$\hbegin{aligned} \hbegin{aligned} \hbegin{aligned}
 - $\dot{v} = v \widehat{W} \widehat{W}^T$
 - Q2: If we learn features that exhibit demographic clustering on one set of subjects, do those same featured cluster on other subjects?

- Experiment 1 De-clustering Learned and Applied to the Same Dataset (S1)
 - Performed *n x n* comparisons for S1 (360,000 comparisons)
 - Learned & Applied de-clustering transform to S1 feature vectors
 - Evaluated false match rate (FMR) differentials pre- and post-applying transformation
- Experiment 2 De-clustering Learned on One Dataset and Applied to a Disjoint Dataset (S2)
 - Performed *n x n* comparisons for S2 (36,864 comparisons)
 - Applied de-clustering transform learned on S1 to S2 feature vectors
 - Evaluated false match rate differentials (FMR) pre- and post-applying transformation

Dataset	Subjects (Samples) Black Female Black Male White Female White Male							
	Black	$\mathbf{Fe}\mathbf{ma}\mathbf{le}$	Black	Male	White	\mathbf{Female}	\mathbf{White}	Male
S1	150	(150)	150((150)	150	(150)	150(150)
S2	50	(50)	50 ((50)	49	(49)	43 (-	43)
S3	106	(300)	117 ((339)	126	(321)	117 (2	278)

How did we measure success?

- Five face recognition fairness measures:
 - Net Clustering [1]
 - Gini Aggregation Rate for Biometric Equitability (GARBE) [2]
 - Fairness Discrepancy Rate (FDR) [3]
 - NIST Inequity Ratio* all ratios
 - NIST Inequity Ratio [4] along the diagonal
- Investigated these measures at a threshold that gives a global FMR of 1e-3
- Broad homogeneity is a non-mated effect (alpha = 1, Beta = 0)

[3] Pereira, T.d.F., Marcel, S.: Fairness in biometrics: a figure of merit to assess biometric verification systems. IEEE Transactions on Biometrics, Behavior, and Identity Science pp. 11 (2021). https://doi.org/10.1109/TBIOM.2021.3102862

[4] Grother, P.: Face recognition vendor test (frvt) part 8: Summarizing demographic differentials (2022)

^[1] Howard, J.J., Sirotin, Y.B., Tipton, J.L., Vemury, A.R.: Quantifying the extent to which race and gender features determine identity in commercial face recognition algorithms (2020)
[2] Howard, J., Laird, E., Sirotin, Y., Rubin, R., Tipton, J., and Vemury, A.. (2022). Evaluating Proposed Fairness Models for Face Recognition Algorithms.

What we found

- Most "fair" values are in bold (higher for FDR, lower for all others)
- Applying this demographic de-clustering universally improved "fairness"
- Across two face recognition algorithms
- Even when applied to an "unknown" set of subjects (S2)

Algorithm	Fairness	Expe	eriment 1	Experiment 2		
Algorithm	Metric	S1 Original	S1 Transformed	S2 Original	S2 Transformed	
	Net Clustering	0.0163	0.00549	0.0252	0.0207	
ArcFace-MS1MV2	GARBE	0.8540	0.65000	0.922	0.909	
AICFACE-M51MV2	FDR	0.9900	0.99900	0.991	0.993	
	INEQ	219.00	30.2000	22.00	18.00	
	$INEQ^{\star}$	15.58	3.74	10.56	6.62	
ArcFace-Glint360k	Net Clustering	0.0150	0.00497	0.0250	0.0197	
	GARBE	0.8350	0.67100	0.955	0.881	
	FDR	0.9910	0.99900	0.990	0.996	
	INEQ	199.00	22.1000	12.5	10.20	
	$INEQ^{\star}$	16.23	3.67	12.47	3.68	

What does this do to false match cohort matrices?

• One example (Glint 360k S1->S1 dataset):

Group ™	FMR = 0.00e+00 N = 22500	FMR = 4.44e-05 N = 22500	FMR = 4.44e-05 N = 22500	FMR = 5.37e-04 N = 22350	В wм-	FMR = 0.00e+00 N = 22500	FMR = 1.78e-04 N = 22500	FMR = 4.44e-05 N = 22500	FMR = 2.68e-04 N = 22350
Cohort Gr	FMR = 3.11e-04 N = 22500	FMR = 0.00e+00 N = 22500	FMR = 2.06e-03 N = 22350	FMR = 4.44e-05 N = 22500	WF	FMR = 0.00e+00 N = 22500	FMR = 8.89e-05 N = 22500	FMR = 7.16e-04 N = 22350	FMR = 4.44e-05 N = 22500
Gallery Co	FMR = 7.11e-04 N = 22500	FMR = 2.33e-03 N = 22350	FMR = 0.00e+00 N = 22500	FMR = 4.44e-05 N = 22500	вм∙	FMR = 1.78e-04 N = 22500	FMR = 9.84e-04 N = 22350	FMR = 8.89e-05 N = 22500	FMR = 1.78 c -04 N = 22500
Gal Gal	FMR = 8.86e-03 N = 22350	FMR = 7.11e-04 N = 22500	FMR = 3.11e-04 N = 22500	FMR = 0.00e+00 N = 22500	BF	FMR = 8.95e-04 N = 22350	FMR = 1.78e-04 N = 22500	FMR = 0.00e+00 N = 22500	FMR = 0.00e+00 N = 22500
L	BF	ВM	ŴF	ŴМ	_ L	BF	ВM	ŴF	ŴМ

Probe Cohort Group

What does this do to human review?

• Pulled two rank 4 probe and candidate lists:

What does this do to human review?

For some subjects, one broadly homogenous candidate set was replaced with another

What does this do to human review?

But for others, a homogenous set was replaced with a non-homogenous one

Current literature on face matching in humans work suggest these are much easier for humans to review

Future Work

- There are **numerous** additional questions to answer in this area.
- What is the best means to identify and remove "clustering" in feature vector space?
- What is the best metric for results? Need something beyond false match rate.
- How stable are these transforms across and within demographic group? Can they be made more stable?
- What is the best algorithm for a human to work with? Might not be "the best algorithm"

Questions & Answers

- Contact information
 - arun.vemury@hq.dhs.gov
 - jhoward@idslabs.org
 - ysirotin@idslabs.org
 - peoplescreening@hq.dhs.gov
- Visit our websites for additional information
 - To see additional work DHS S&T supports, visit <u>www.dhs.gov/science-and-technology</u>
 - Detailed application instructions will be available in a separate document on <u>https://mdtf.org</u>
 - To view additional information about this year and prior Rallies, visit <u>https://mdtf.org</u>

