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Abstract

In face recognition applications, humans often team with algorithms, reviewing algorithm

results to make an identity decision. However, few studies have explicitly measured how

algorithms influence human face matching performance. One study that did examine this

interaction found a concerning deterioration of human accuracy in the presence of algorithm

errors. We conducted an experiment to examine how prior face identity decisions influence

subsequent human judgements about face similarity. 376 volunteers were asked to rate the

similarity of face pairs along a scale. Volunteers performing the task were told that they were

reviewing identity decisions made by different sources, either a computer or human, or were

told to make their own judgement without prior information. Replicating past results, we

found that prior identity decisions, presented as labels, influenced volunteers’ own identity

judgements. We extend these results as follows. First, we show that the influence of identity

decision labels was independent of indicated decision source (human or computer) despite

volunteers’ greater distrust of human identification ability. Second, applying a signal detec-

tion theory framework, we show that prior identity decision labels did not reduce volunteers’

attention to the face pair. Discrimination performance was the same with and without the

labels. Instead, prior identity decision labels altered volunteers’ internal criterion used to

judge a face pair as “matching” or “non-matching”. This shifted volunteers’ face pair similar-

ity judgements by a full step along the response scale. Our work shows how human face

matching is affected by prior identity decision labels and we discuss how this may limit the

total accuracy of human-algorithm teams performing face matching tasks.

Introduction

Government and business applications that must establish the identity of individuals fre-

quently rely on photo identification documents issued by official government agencies.

Authorized agents review these identity documents to ensure that the photo on the document

matches the individual who presented it. This process of verifying a person based on their

photo relies on a human cognitive task known as face matching. Humans perform face
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matching tasks hundreds of times every day and, like all human tasking, this activity is subject

to errors and cognitive biases. For example, despite excellent ability to recognize familiar faces,

people are generally poor at face matching tasks involving unfamiliar faces, with error rates in

excess of 10% [1–4].

Recent advances in machine learning have led to the development of computer-based face

matching algorithms capable of identifying individuals with accuracy rates rivaling even those

of trained forensic facial examiners [3, 5]. Nonetheless, humans continue to be a necessary

part of most identity tasks, particularly when the outcome of the task is impactful. The reasons

for continuing to have this “human-in-the-loop” are two-fold. First, humans are uniquely

capable of deciding when the use of automated face matching is not appropriate. Second,

humans are necessary to perform any exception processing steps, should the computer based

technology fail. The level of effort associated with human review of automated face matching

tasks can also vary. For example, forensic facial examiners may have weeks or months to

review face images while security personnel may be required to decide if a face pair is a match

in a few seconds or minutes.

Despite the rapid proliferation of face recognition technology in “human-in-the-loop”

applications, the effect of incorporating algorithm decisions into human face matching tasks

remains poorly understood. Questions outstanding include how human face matching is

affected by information provided by algorithms and the conditions required for synergistic

human-algorithm teaming.

Prior work

Humans posses dedicated neural resources to process and recognize faces [6], with specific

brain pathways for establishing face identity driven by differential neural activation. The

sophisticated architecture dedicated to processing and remembering faces shows the social

importance and evolutionary necessity of inferring information from faces. However, human

performance on these tasks is known to be affected by long-term perceptual learning. For

example, humans are generally poor at matching unfamiliar faces [7], as seen in the so-called

“other race” effect, whereby an individual’s face discrimination performance is reduced when

evaluating faces from people belonging to a racial category for which the individual has less

prior experience [8]. Human face matching accuracy can also be impacted by short-term face

adaption effects whereby the perception of a face can be altered by previously viewed faces [9–

11].

Ancillary information can also influence human face matching judgements under uncer-

tainty. Dowsett and colleagues documented beneficial effects of group decision-making for

individuals working in pairs on face matching tasks, however, pair performance was limited

by the performance of the best performing individual or fell below expectations if each individ-

ual’s errors were independent [12]. Fysh and Bindemann showed that identity labels (same,

different, or unresolved) provided together with face pairs modulated face matching accuracy

[13]. The authors theorized that labels may have drawn attention away from the face stimuli,

increasing accuracy when label information was correct, but decreasing it when label informa-

tion was incorrect. Indeed, spatial attention is known to improve human face discrimination

accuracy, suggesting that adding uninformative labels should reduce face discrimination accu-

racy by drawing attention away from the face [14].

Finally, humans can confuse faces of people matched in gender, age and race. This explains

why the majority of face pairs used on the GFMT are demographically homogeneous [2].

Additionally, in a White et al. study, participants were tasked with matching a probe face to a

candidate list of eight faces selected by an algorithm based on computed similarity to the
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probe. The results of this study showed that people perform poorly at this task, achieving less

than 70% correct performance, with a significant number of errors due to within demographic

group false positives [15].

Given that these effects can lead to decreased human performance at face matching tasks,

its not surprising that some have postulated using computer based face recognition algorithms

for some face matching tasks. Indeed modern face recognition algorithms have been shown to

outperform humans in matching unfamiliar faces [3, 5]. However, automated face recognition

is not infallible. Computer algorithms can confuse faces of people matched in gender, age, and

race with greater likelihood [16]. Computer based face recognition can also be fooled by live-

ness or spoofing attacks, where a non-biological sample, such as a photograph, is presented.

Particularly when the impact of a face recognition system failure is high, full automation may

be unwise. In these situations there is still a need to include a “human-in-the-loop”, in such a

way that the face recognition output is combined with the human decision. The human opera-

tor can also complete a number of tasks that machines cannot do yet (e.g., detect suspicious

behaviors or rule-out a match based on other information) or implement alternative pro-

cesses/technologies should a face recognition system encounter a known failure case (e.g. a

mask). However, there is little research on how human decision making is influenced by face

recognition algorithms. Do the human performance numbers as reported in [7, 14, 15] and

others improve when algorithm outcomes are provided? Fysh and Bindemann [13] conducted

preliminary research on this and showed identity labels indeed shifted human determinations

but postulated this was because of decreased attention to the face matching task. We reproduce

their results but implement a signal detection theory framework to show that they are not due

to decreased attention but instead arise because the algorithm information introduces a cogni-

tive bias that shifts the human’s perception of face similarity.

Applying signal detection theory to face matching tasks

Human performance on perceptual tasks like face matching can be modeled using signal

detection theory (SDT) [17]. SDT posits that task performance is determined by the magnitude

of the response stimuli generated along some perceptual scale internal to the observer. In the

case of face matching, the scale is related to the similarity between the two faces. Similar faces

may generate a high response and dissimilar faces may generate a low response. According to

SDT, the observer makes a decision regarding whether a given pair of faces belong to the same

person or to different people by comparing the value of the generated response to some inter-

nal criterion, or decision threshold. A particular stimulus (i.e. face comparison) response value

above the individual’s criterion results in a “same person” determination, while responses

below this threshold result in a “different people” determination. While the real distributions

of responses for same and different pairs are hard to estimate, SDT allows the estimation of

several convenient measures relevant to task performance, including a measure of the observ-

ers’ sensitivity to the separation between the two distributions (d0) as well as the location of the

decision threshold, a receiver operating characteristic (ROC) curve that measures how perfor-

mance changes given different thresholds, and a net threshold-independent measure of sensi-

tivity tabulated as the area under the ROC curve (AUC). The d0 and the decision threshold can

be readily estimated by measuring the likelihood that observers correctly classify face pairs that

are the same, and measuring the likelihood that observers incorrectly classify face pairs that

are different as the same. Data from tasks which ask observers to rate the similarity of face

pairs along a scale can be used to further calculate the ROC and AUC.

Changes in decision threshold cognitively biases observers’ decision-making. Observers

with high thresholds are more likely to classify face pairs as different, regardless of the truth,
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whereas observers with low thresholds are more likely to classify face pairs as the same. For

example, groups of individuals who have exceptional face recognition abilities, or super-recog-

nizers (SRs), have a greater sensitivity to face similarity than the general population [3, 18].

However, SRs also have higher decision thresholds when performing challenging face match-

ing tasks [19]. In addition to differences in decision thresholds across individuals, face match-

ing decision thresholds for a single individual can also change based on task structure. In a

mock line-up task, observers matching sequentially presented faces had higher decision

thresholds than those matching faces presented simultaneously [20]. These studies demon-

strate how SDT analyses can be applied to face matching tasks.

Ancillary information, such as identity labels, can separately affect face sensitivity (i.e.

discriminability) and decision thresholds in face matching tasks. Ancillary information can

divert attention away from the face pair, which should result in lower sensitivity for faces

reflected in lower values of d0. On the other hand, ancillary information may change the deci-

sion threshold independent of sensitivity, cognitively biasing decision-making. Fysh and Bin-

demann computed sensitivity and decision thresholds for different stimulus conditions, but

did not discuss their findings within an SDT framework [13]. In our study, we utilize this

method as a means to characterize how prior identity information influences human face

matching performance.

Contributions

Our study characterizes the cognitive effects of providing explicit identity information from a

human or a computer source on human face matching performance, making the following

contributions to our understanding of human-algorithm teaming:

1. First, we replicate prior results [13] showing a strong influence of prior identity decisions

on human identity judgements, with a sample of hundreds of diverse subjects.

2. Second, despite a greater reported trust in algorithm decisions reported by our test volun-

teers, we show that volunteers’ decisions are similarly affected by prior match/no-match

labels whether they are described as coming from human or algorithm sources.

3. Third, we use a signal detection theory framework to show that this prior information does

not reduce face discriminability as would be expected from reduced attention to the face pair

and as suggested in [13]. Instead we show that prior identity information cognitively biases

human decisions, shifting the response criteria by one full step along the similarity scale used.

4. Finally, we discuss how these effects likely reduce the potential synergies of human-algo-

rithm teams in real-world scenarios.

Materials and methods

To study the effect of prior identity information on human face matching performance we

developed a face matching task modeled after the Glasgow Face Matching Task (GFMT) [2].

This task was administered to paid volunteers (“volunteers”) as part of a larger biometrics test.

Limited details of this test are presented in this section. Full details are available elsewhere [21,

22]. All testing and data collection was approved by an Institutional Review Board.

Test logistics

Data for this study was gathered over a five-day period in May 2019, with 40-50 volunteers

tested in morning and afternoon sessions. During testing, volunteers first performed biometric
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transactions using a diverse set of biometric technologies as part of an unrelated experiment

[23]. The face matching task was administered on paper to volunteers at the conclusion of

each test session. Volunteers did not have a time-limit for completing the task, but most

finished the full survey within 15 minutes. The data were acquired using the IRB protocol

“Development and Evaluation of Enhanced Screening” number 120180237, approved by New

England IRB.

Face matching task

The face matching task administered as part of our study was modeled after the short version

of the GFMT [2]. Our specific task was modified from the GFMT to include: prior identity

information, diverse face pairs resembling our diverse test volunteer population, and easy to

recognize celebrity faces. Due to time constraints, we were not able to administer the entirety

of the GFMT-short version along with the additional face stimuli. We down-selected face pairs

from the GFMT-short based on comparison scores generated by a commercial biometric face

matching algorithm in order to select the most challenging same and different face pairs. To

increase the diversity of face pairs in the task, we included African-American face pairs from

the Multiple Encounters Dataset (MEDS) [24]. This was done as a means to account for the

“other-race effect” [8]. Face pairs from MEDS were selected to have neutral expressions, and

be as similar as possible based on similarity scores returned by a commercial face recognition

algorithm. Selected faces from the MEDS data set were converted to gray scale and faces/hair

were cropped to match the style of GFMT stimuli. Finally, as a screening control, we included

a mated and an obviously non-mated doublet of celebrity face pairs. These face pairs are of

well known, U.S. public figures, likely to be familiar to our test population recruited from the

local area, and therefore easy to distinguish and match [7]. The full set of face pairs used as a

part of our survey was balanced for the number of same and different faces as well as for gen-

der. This set is shown in Fig 1.

The face-matching task was administered via paper with each face pair and decision pre-

sented on a separate page with a colored background and a 7-point certainty scale to indicate

their match decision (Table 1). Faces in some pairs were from the same individual and in other

pairs were from different individuals (Fig 1). All volunteers were told that their task was to

review the face pair and provide their own judgment as to whether each face pair presented

was of the same person or of different people. Volunteers could spend an unlimited amount of

time reviewing each face pair and decision however, most volunteers completed the entire task

within 15-minutes.

The survey experiment followed a nested design (Fig 2). Volunteers were divided into three

groups. Each group received a different survey variant (Control, Computer Source, Human

Source). All survey variants presented volunteers with the same set of experimental face pairs

(Q1 to Q12), in the same order, but with varying prior identity information context. In the

control variant, no prior identity information was provided. In the Human Source variant, vol-

unteers were told a human had reviewed each face pair and provided an identity decision. In

the Computer Source variant, volunteers were told a computer had reviewed each face pair

and provided an identity decision. In the Control survey variant, each face pair was presented

on a grey background with the instruction “compare faces”. Prior identity information was

nested within Computer Source and Human Source variants and indicated per face pair using

a colored background and a text label (Told Same: green, “same person”; Told Different:

orange, “different people”). Prior identity information was presented simultaneously to the

volunteers with each face pair. Two versions (Version 1 and Version 2) of each survey with
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Fig 1. Image pairs selected for the face matching task. Celebrity faces not shown.

https://doi.org/10.1371/journal.pone.0237855.g001
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prior identity information ensured that each face pair was presented under both same and dif-

ferent instructions to half of the volunteers in each group.

At the beginning of the survey, volunteers were asked a multiple choice question regarding

their trust in the ability of humans, computers, or themselves to identify a person. Volunteers

in the control survey variant were asked, “Do you trust yourself to identify a person?”. Volun-

teers in the computer source variant were asked, “Do you trust a computer to identify a per-

son?”. Volunteers in the human source variant were asked, “Do you trust a human to identify

a person?”. Volunteers were given “Yes”, “No”, and “Not Sure” response choices. This question

was used to assess trust in each information source.

Volunteer demographics

A total of 376 paid volunteers participated in this study. Volunteers were recruited from the

local area (Maryland, USA) as part of a larger evaluation of biometric systems [23]. Volunteers

self reported gender, age, and race during pre-study screening and volunteer selection subse-

quently blocked on these categories to ensure equal representation across survey variants.

Overall sample size was selected to ensure at least 100 unique volunteers took each survey

variant. A total of 33 volunteers who failed to correctly respond on celebrity face pairs were

excluded from analysis as incorrect responses suggested significant issues in face perception,

lack of task understanding, failure to comply with instructions, or lack of familiarity with the

celebrity faces. A total of 12 were excluded from the human source survey group, 13 from com-

puter source survey group, 8 from control survey group. Responses to celebrity face pairs were

not analyzed further.

Table 2 shows the demographics of the volunteers that were assigned to each survey condi-

tion, after removing volunteers that did not correctly respond to the celebrity face pairs. An

equal number of volunteers self-reported their gender as “Male” and as “Female” and most vol-

unteers self-reported as “Black or African-American” (shortened to “Black” in the Table 2) fol-

lowed in frequency by those self reporting as “White”. For brevity, all other self-reported races

are collapsed into the “Other” category. Blocking efforts were made to distribute gender, age,

and race equally across the survey conditions. Table 2 shows this was successful in assigning

statistically equal (Pearson Chi-squared test for count data) numbers of individuals to each

survey variant. One subject was removed from Table 2 because they did not self-report demo-

graphic information.

Data analysis

Volunteer responses to each face pair were grouped based on participant and survey variant

(Control, Computer Source, and Human Source). Within the Computer Source and Human

Table 1. Face matching task certainty scale.

Value Response

3 I am absolutely certain this is the same person

2 I am mostly certain this is the same person

1 I am somewhat certain this the same person

0 I am not sure

-1 I am somewhat certain these are different people

-2 I am mostly certain these are different people

-3 I am absolutely certain these are different people

https://doi.org/10.1371/journal.pone.0237855.t001

PLOS ONE Algorithm outcomes cognitively bias human face matching performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0237855 August 21, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0237855.t001
https://doi.org/10.1371/journal.pone.0237855


Source groups, responses were additionally grouped based on nested prior identity informa-

tion (Told Same vs. Told Different). Celebrity face pairs were presented last.

Signal detection theory metrics including receiver operating characteristic (ROC) curves

and area under the curve (AUC) were calculated according to standard methods for rating

Fig 2. Survey experiment design. Images adapted from paper surveys.

https://doi.org/10.1371/journal.pone.0237855.g002

Table 2. Blocking based on self-reported gender, age, and race within each survey condition.

Demographic Group Survey Condition Equal Distribution Across Conditions (p< 0.05)

Computer Human None

Gender

Female 50 62 63 TRUE

Male 53 57 57 χ2(2) = 0.41,

p = 0.81

Age Bin

18-25 3 8 12

26-35 35 37 36 TRUE

36-45 13 28 25 χ2(10) = 13.1,

46-55 27 18 23 p = 0.22

56-65 19 19 15

65+ 6 9 9

Race

Black 50 47 61 TRUE

White 32 48 47 χ2(4) = 8.3,

Other 21 24 12 p = 0.083

https://doi.org/10.1371/journal.pone.0237855.t002
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tasks [25]. Briefly, we converted the graded certainty responses for each test item Ri to binary

decisions (1 = same, 0 = different) using a sliding threshold θ 2 (−2.5, −1.5, −0.5, 0.5, 1.5, 2.5),

described in Table 3. For each threshold value, we calculated the true positive rate TPRθ, the

false positive rate FPRθ, and overall accuracy ACCθ as:

TPRy ¼
1

n

X

same

Ri > y

FPRy ¼
1

m

X

different

Ri > y

ACCy ¼
nðTPRyÞ þmð1 � FPRyÞ

nþm

ð1Þ

The AUC was estimated as Az based on Gaussian signal and noise distributions assump-

tions [25] as:

Az ¼ F½
I
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ S2
p � ð2Þ

where I and S are the intercept and slope of the linear relationship between F−1[HITθ] and

F−1[FAθ],F
−1 is the quantile function for the normal distribution, and F is the distribution

function for the normal distribution. The two celebrity face pairs were not used in the calcula-

tion of SDT or accuracy metrics.

Results

Trust in identity information sources

To determine the degree to which individuals trusted each source of prior identity information

(human versus computer), we tabulated the proportion of responses for each variant of the

trust question (see Face Matching Task). These results are shown in Fig 3. We saw a signifi-

cant difference in the proportion of “Yes” responses between different sources (χ2(2) = 12.0,

p = 0.003). Overall, the responses indicated that most volunteers trusted themselves to make

identity decisions (73% “Yes” responses), with lower but roughly equal proportions of volun-

teers trusting computers (56% “Yes” responses) and humans (i.e. other people; 53% “Yes”

responses). Interestingly, there was also a significant difference in “No” responses between dif-

ferent sources (χ2(2) = 7.6, p = 0.022). Volunteers distrusted other people to make identity

decisions at the highest rates (18% “No” responses) but similar proportions distrusted them-

selves (9% “No” responses) as computers (8% “No” responses). These data indicate that similar

Table 3. Thresholds used for signal detection theory analysis.

θ Description

2.5 very strict

1.5 mostly strict

0.5 slightly strict

-0.5 slightly permissive

-1.5 mostly permissive

-2.5 very permissive

https://doi.org/10.1371/journal.pone.0237855.t003
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proportions of people trust identity information from computer and human sources, but a

greater proportion of volunteers distrust identity information from other human sources.

Variations in face matching accuracy based on prior identity information

source

Using the response scale in Table 3, a decision threshold of θ = 0.5 separates responses indicat-

ing some confidence that an image pair is of the same identity from other responses. At this

threshold, responses ranging from “absolutely certain these are different people” to “not sure”

indicate a “different” determination by the volunteer and responses ranging from “somewhat

Fig 3. Perceived trust of identity sources. Error bars are binomial 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0237855.g003
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certain this is the same person” to “absolutely certain this is the same person” indicate a

“same” determination. The following sections use this single decision threshold to compare

variations in matching accuracy across survey conditions. Later sections examine how perfor-

mance varies across decision thresholds (see Signal Detection Theory Analysis). Differences

in task performance associated with subject demographics are described in the accompanying

S1 Appendix of this paper.

Overall, volunteers performing the face matching task in the absence of prior information

were correct on 74% of face pairs (SD = 13, range 50%-100%), modestly lower than reported

population norms for the short version of the GFMT (average 81% correct, SD = 10,

range = 51%-100%, [2]). This difference in performance is reasonable given that our task

included only “difficult” face pairs from the GFMT and MEDS datasets. This brings our

average performance closer to what was reported in [15]. A one-way analysis of variance

(ANOVA) of the accuracy numbers underlying the averages in Table 4 showed no effect of

survey variant (none, human, or computer; ACC0.5; F(2) = 0.77, p = 0.46). This indicates that

our paper-based 14-item task (12 evaluation pairs and 2 screening pairs) was consistent with

the 40-item digital short version of the GFMT, and other previous work where algorithms

select challenging face pairs.

Table 4 also shows the false positive rate and true positive rate as a function of prior infor-

mation source. A one-way ANOVA found no effect of survey variant on false positive rates

(FPR0.5; F(2) = 0.55, p = 0.58) or true positive rates (TPR0.5; F(2) = 0.19, p = 0.83). This indi-

cates that the source of identity information and the modifications in survey instructions did

not influence the ability of volunteers to perform the face matching task at a threshold of θ =

0.5.

Variations in face matching accuracy based on prior identity information

We next examined whether, as a population, volunteers changed their responses based on the

prior identity information (i.e. what they were told about each face pair; responses to questions

marked green versus orange in Fig 2) and prior identity information source (human vs. com-

puter). For this analysis, we again used a threshold of θ = 0.5. Table 5 shows performance met-

rics as a function of prior identity information.

The effect of prior identity information was nested within the human and computer survey

variants and volunteers were presented same and different prior identity information for

Table 4. Face matching performance as a function of prior identity information source (threshold = 0.5). 95% con-

fidence intervals are estimated by bootstrap resampling.

Source n ACC (95% CI) FPR (95% CI) TPR (95% CI)

None 120 0.75 (0.73–0.78) 0.19 (0.16–0.23) 0.70 (0.66–0.74)

Human 120 0.74 (0.72–0.77) 0.20 (0.17–0.23) 0.69 (0.65–0.73)

Computer 103 0.73 (0.71–0.76) 0.22 (0.18–0.26) 0.69 (0.65–0.72)

https://doi.org/10.1371/journal.pone.0237855.t004

Table 5. Face matching performance as a function of prior identity decision (threshold = 0.5). 95% confidence

intervals are estimated by bootstrap resampling.

Prior n ACC (95% CI) FPR (95% CI) TPR (95% CI)

None 120 0.75 (0.73–0.78) 0.19 (0.16–0.23) 0.70 (0.67–0.74)

Same 223 0.73 (0.71–0.76) 0.25 (0.22–0.29) 0.72 (0.68–0.75)

Different 223 0.75 (0.72–0.77) 0.17 (0.14–0.20) 0.66 (0.63–0.70)

https://doi.org/10.1371/journal.pone.0237855.t005
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different face pairs on the same survey. The effect of prior identity information could not be

examined for the control survey. We analyzed the data using a repeated measures ANOVA,

examining the main effects of survey variant (between subjects) and prior identity information

(within subjects). The ANOVA found no effect of prior identity information (same or differ-

ent) on average accuracy for the experimental surveys (ACC0.5). However, it did find a signifi-

cant effect of prior identity information on both true positive rates (TPR0.5; F(1, 222) = 6.56,

p = 0.01) and false positive rates (FPR0.5; F(1, 222) = 14.76, p = 0.0002). True positive rates

declined from 72% when volunteers were told face pairs were from the same person (green

questions in Fig 2), to 66% when volunteers were told face pairs were from different people

(orange questions in Fig 2). False positive rates declined from 25% when volunteers were told

face pairs were from the same person, to 17% when volunteers were told they were from differ-

ent people. These data are summarized in Table 5. This indicates that the prior identity deci-

sions cognitively biased volunteers’ face matching decisions.

Interestingly, the ANOVA did not find any effects of survey variant (human or computer)

on any of the measures. In fact, the average difference between TPR0.5 and FPR0.5 as a function

of prior identity information was nearly identical. For the computer source, the difference in

TPR0.5 was 0.058 and the difference in FPR0.5 was 0.087, nearly identical to 0.052 and 0.083,

respectively, for the human source. This indicates that despite the fact that more volunteers

reported greater mistrust of humans relative to algorithms to make identity decisions, volun-

teers were equally swayed by prior identity information from either source.

To better understand the effect of prior identity information on observed true positive and

false positive rates, we analyzed the response distributions across volunteers for each face pair

as a function of prior identity information: “same” or “different” (Fig 4). For each face pair, we

then tested for a difference in distributions with prior identity decisions using a Wilcoxon

signed-rank test. Significant differences are denoted as asterisks for each face pair in Fig 4. We

found that responses were statistically different (p< 0.05) for 6 of the 12 individual face pairs.

We quantified the magnitude of this difference by subtracting means of the two response dis-

tributions for each face pair, finding an average shift of 0.39, indicating greater confidence that

the face pairs are similar when the prior identity decision was “same” versus when it was “dif-

ferent”. This shift was significant across all face pairs (t(11) = 3.34, p = .007). All of these find-

ings were consistent for subjects of different age, gender, and race (see S1 Appendix).

Signal detection theory analysis

We next examined these effects in the context of signal detection theory, which separates vol-

unteers’ sensitivity to face similarity from any cognitive bias in making same/different judg-

ments. Recall from our earlier discussion that, broadly, there are two ways of measuring how

cognitive tasks may be impacted via SDT. The first involves changes in an observer’s sensitiv-

ity, i.e. a change in how well an observer can discriminate faces of the same individual from

those of different individuals. A drop in sensitivity would be expected if adding information

diverts spatial attention away from the face stimuli. Sensitivity is measured by the d0 metric.

The second means of impacting cognitive tasks is by raising or lowering the internal criterion,

i.e. the required similarity to judge a pair of faces as being of the same individual.

Table 6 shows the sensitivity (d0) and the criterion (cognitive bias) calculated based on aver-

age TPR and FPR estimates for each prior identity information condition. Because SDT met-

rics are not defined in the cases where TPR or FPR are zero or one, it was not possible to

calculate SDT measures for individual subjects. We therefore examined significance by

estimating 95% confidence intervals around each metric using bootstrap resampling. This

analysis showed that the confidence intervals for sensitivity (d0) values for all three conditions
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overlapped, indicating that prior identity information did not influence volunteers’ ability to

perceive differences in the faces as would be expected with reduced attention to the face stimu-

lus. Instead, volunteers changed their criterion, as shown by non-overlapping confidence

intervals of criterion values for the “same” and “different” conditions. This indicates that prior

identity information biased the volunteers, making them more confident that two faces were

Fig 4. Distribution of responses for each face pair based on prior identity information content. Means of each

distribution denoted with triangles. Pairs where distribution shift is significant (Wilcoxon signed-rank test) are

denoted with an asterisk.

https://doi.org/10.1371/journal.pone.0237855.g004
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of the same person in the “same” condition, and more confident that two faces were of differ-

ent people in the “different” condition. These changes in response criterion were consistent

for subjects of different age, gender, and race (see S1 Appendix).

So far we have considered results only for one decision threshold of θ = 0.5. However, we

are more broadly interested in whether the effects observed in the previous sections also hold

at other decision thresholds. The rating task we employed allows signal detection theory met-

rics to be calculated across a range of decision thresholds.

The receiver operating characteristic curves plotted in Fig 5 offer a complete visualization

of the effect of prior identity information on face matching responses across thresholds, show-

ing the measured TPR as a function of FPR. The measure of sensitivity that characterizes per-

formance across thresholds is Az, which corresponds to the area under the ROC curve fitted to

the data assuming a Gaussian distribution. Fig 5A plots the ROC curves as a function of prior

identity information as well as for the control survey variant. All plotted points fall along the

same curve with Az values varying by less than 0.02 indicates that prior identity information

Table 6. Sensitivity (d0) and criterion values as a function of prior identity decision (threshold = 0.5). 95% confi-

dence intervals are estimated by bootstrap resampling.

Prior n d0 (95% CI) Criterion (95% CI)

None 120 1.39 (1.24–1.55) 0.16 (0.07–0.26)

Same 223 1.24 (1.09–1.38) 0.05 (-0.03–0.13)

Different 223 1.38 (1.23–1.53) 0.27 (0.19–0.36)

https://doi.org/10.1371/journal.pone.0237855.t006

Fig 5. Prior identity information only modifies the receiver operating characteristic criterion. A. No change in the ROC curve with prior identity

information. Dashed lines correspond to fitted ROC under gaussian approximation (linear fit in z-transformed space). Overall ROC is the ROC fitted to

data collapsed across all conditions. B. Change in bias with prior identity information. Colored bands correspond to iso-bias regions spanning different

prior identity information conditions for each threshold level. Note overlap in iso-bias regions for slightly permissive and slightly strict thresholds.

Dashed curve is the overall ROC.

https://doi.org/10.1371/journal.pone.0237855.g005
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had no effect on the sensitivity across the full range of thresholds. Instead, Fig 5B shows that

prior identity information biased volunteers’ criterion for making same/different judgements.

Prior identity information moved responses leftward and upward along the ROC for the

“same” condition and rightward and downward along the ROC for the “different” condition.

Fig 5 also illustrates the magnitude of this shift. In particular, for the two middling thresholds,

the shifts in response associated with prior identity information were equal to a full step on the

decision scale (See Table 3). Thus, prior identity information could shift responses from “I am

not sure” to “I am somewhat certain this is the same person” which could have a notable effect,

especially when the match is difficult.

Conclusion

We find that human face matching certainty decisions are systematically altered by prior iden-

tity information. When given prior identity information in the form of “same” or “different”

labels, our volunteers were more confident that faces labeled “same” are similar and faces

labeled “different” are different. This biased their certainty judgements of face similarity, but

did not reduce their ability to discriminate faces. Interestingly, volunteers reported distrusting

human identification ability more than computer identification ability. However, human and

computer sources of prior identity information biased certainty responses equally. Overall,

this shows that face recognition algorithms incorporated into a human process can influence

human responses, likely limiting the total system performance.

Previous work on human-algorithm teaming in face recognition by Fysh and Bindemann

[13] attributed increased error rates to attentional processes, postulating that algorithm match

results divert attention from the face pair. Prior studies of spatial attention have shown that

attentional allocation results in an increase in visual discrimination performance [26]. If

match decisions diverted spatial attention away from the faces, sensitivity should have

declined. However, we found no effect on sensitivity in our study, suggesting that changes in

face-matching performance were not due to spatial attention. Rather, our results suggest that

the biases introduced by the information carried by face-match decision labels are introduced

at higher levels of decision making.

What does our study say about the likely performance of human-algorithm teams? Are they

the best of both worlds, combining human ability to handle exceptions with the superior accu-

racy of modern face recognition algorithms? The answers likely depend on the use case. In

forensic applications, trained facial examiners may carefully pore over every possible detail of

available face imagery, taking months to make their decision [3]. Examiners trained to under-

stand the inner workings of algorithms, may also learn to optimally incorporate algorithm

decisions in their analytic workflow so that overall performance can be increased. Alternately,

examiners may be required to make their decision independent of the algorithm and the

results may be fused by a third party, reaping the demonstrated performance gains of such

workflows [3]. On the other hand, in the travel environment, identity decisions must be made

within a matter of seconds and human operators of face recognition systems do not have the

benefit of deliberation. Further, the vast majority of algorithm face matching errors may have

extenuating circumstances. In this environment, the performance of the human algorithm

team may be limited by human error. For example, under time constraint, the biasing effect of

a false positive result from an algorithm would reduce the likelihood that this error is caught

[13]. On the other hand, given that most algorithm non-matches may have extenuating factors,

humans may ultimately get in the habit of rationalizing these errors and overruling algorithm

non-matches.
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Much additional research is needed broadly in the area of human algorithm teaming and

specifically as it applies to face matching tasks. To better estimate the total performance of

human-algorithm teams, performance should be assessed in the context of actual errors

made by algorithms, both in terms of frequency of error occurrence and using the specific

face pairs for which errors are made. Because face recognition performance of both humans

and algorithms varies with face demographics, future work should address how this influ-

ences human-algorithm teams. Doing this will require development of large, new, controlled,

face pair datasets that are demographically diverse, which would allow for conclusive

research on demographic effects. Further, additional research is needed regarding how and

whether to present algorithm face matching decisions to humans so as to maximize total sys-

tem performance. Understanding the effect of specific pieces of information, presented at

specific times, during the human face matching process, should be considered before adding

any information to these workflows in real world situations. Finally, face recognition is

unique amongst popular biometric modalities in that humans share a similar perceptual

capability. Consequently, errors made by humans and algorithms may be driven by similar

underlying face features. Thus, some algorithm errors will be difficult for humans to detect.

Developing face recognition algorithms that make errors that are easier for human team-

mates to detect could lead to better performing human-algorithm teams. With the growing

adoption of face recognition technology, it is important to consider how humans and algo-

rithms perform together and understand how these two entities interact as it may lead to the

success or failure of a face matching system.

Supporting information
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