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Biometric identity workflows are made up of multiple subsystems which can be automated to varying degrees 

using computer algorithms. Setting the appropriate level of automation for each subsystem is crucial for 

optimal system performance, which relies on synergistic human-algorithm teams. In this work, we leverage 

an automation design framework from prior research to define levels of automation for each biometric 

subsystem. This framework aligns a four-stage model of human processing with equivalent system functions. 

We propose applying this framework as a method to determine the appropriate allocation of tasks between 

humans and algorithms within a biometric identity workflow. While previous work has focused on the role 

of the human in the comparison and decision subsystems, we emphasize the need to consider the full 

biometric system in determining the role of humans in biometric identity workflows. 

 

 

As technology continues to improve, human interactions 

with automation are constantly increasing. While human 

centered design principles aim to optimize technology for 

human users, these principles may not be implemented due to 

organizational constraints and/or technology being adapted for 

different use cases. Furthermore, as humans are required to 

increase their interactions with automation to complete 

complex tasks, the notion of a human-autonomy team should 

be considered (Lyons et al., 2021). As described by Lyons et 

al. (2021), human-autonomy teams are separate from human-

automation interactions because automation is simply a tool to 

facilitate a workflow. When an automated system includes 

decision making and requires interdependence with a human, 

there is a shift towards considering the automated system as a 

teammate. In the context of biometric identity workflows, we 

specifically consider humans teaming with biometric 

algorithms (human-algorithm teams). 

Human-algorithm teams are of interest because many 

technologies are deployed with a human operator to oversee or 

supervise the automation. Research focused on face 

recognition has suggested that humans and algorithms can be 

combined in ways that result in improved performance 

compared to each entity working alone (Phillips et al., 2018). 

However, other research has found that humans may limit the 

performance of these teams due to unconscious cognitive 

biases (Carragher & Hancock, 2022; Howard et al., 2020). 

While there are some disagreements in the literature as to 

whether humans and algorithms can obtain synergy in face 

recognition systems, it ultimately depends on the use case and 

what level of automation (LOA) should be implemented.  

While many frameworks for human-autonomy teaming 

exist (e.g., Dekker & Woods, 2002; Donahue et al., 2022; 

Lyons et al., 2021; O’Neill et al., 2022), Parasuraman et al. 

(2000) present an adaptable framework which can be applied 

in various contexts. Parasuraman et al.’s (2000) work 

developed a model to define system functions and appropriate 

levels of automation (LOAs) for those functions based on 

human interactions with the system. This framework 

highlights the importance of designing for the human and not 

designing an “optimal” system with the human operator as an 

afterthought. Identifying the appropriate LOA allows for 

proper placement of the human within the workflow (i.e., the 

human’s skills can be utilized to add value). Prior work on 

automation related to biometric systems has only focused on 

comparisons and decisions (e.g., Howard et al., 2020, Phillips 

et al., 2018). Here we apply Parasuraman et al.’s (2000) 

framework to the entire general biometric system with the aim 

of determining optimal task allocation between a human 

operator and each automated subsystem while simultaneously 

considering the capabilities of both.   

 

BIOMETRIC SYSTEM OVERVIEW 

 

 Biometric characteristics are physiological measures that 

differentiate one person from another. There are many 

biometric modalities that can be used to differentiate people, 

such as fingerprints, face, and iris. When discussing biometric 

systems, international standard ISO/IEC 19795-1 defines 

seven subsystems comprising a generic biometric system: data 

capture, transmission, signal processing, data storage, 

comparison, decision, and administration. To maintain a 

generalized model similar to ISO/IEC 19795-1, this work 

excludes the transmission and administration subsystems 

(Figure 1). The following terms will be used in describing the 

relevant subsystems (ISO/IEC 2382-37): 

• Biometric characteristic: a characteristic from which 

distinct, repeatable features can be extracted from 

individuals 

• Biometric sample: holistic representation of 

biometric characteristics (e.g., image of entire face, 

fingerprints, or iris) 

• Biometric feature set: mathematical representation of 

biometric characteristics (e.g., distances between 

points on face, fingerprints, or iris) 

• Reference: one or more stored biometric samples or 

feature sets attributed to an individual and used as a 

baseline sample during comparison 
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• Probe: a biometric sample or feature set captured at 

another point in time and compared to a reference 

• Identification: process of comparing a probe against a 

database of references to return a single biometric 

reference (i.e., who is this individual?) 

• Verification: process of confirming an identity claim 

through a comparison to a reference (i.e., is this 

individual who they claim to be?) 

Verification and identification are two separate processes 

(comparison of two images and comparison of one image to 

many images, respectively), which occur through the same 

general biometric identity workflow. As previously 

mentioned, to maintain a general biometric workflow this 

analysis focuses on five subsystems: data capture, signal 

processing, data storage, comparison, and decision (Figure 1).  

Data capture subsystem. A biometric device that 

captures an image of an individual’s biometric characteristics 

(e.g., face, iris, fingerprint). The captured output is then sent to 

the signal processing subsystem.  

 Signal processing subsystem. The image from the data 

capture system undergoes a quality assessment to determine if 

a request to re-capture an image should be sent back to the 

data capture subsystem user and/or operator. Once the image 

quality requirement is satisfied, the signal processing system 

creates a biometric feature set from the captured image.  

During enrollment, this feature set is saved in the data storage 

subsystem and becomes a biometric reference.  During 

verification and identification, this feature set is sent to the 

comparison subsystem.  

 Data storage subsystem. References are stored in the 

data storage subsystem and sent directly to the comparison 

subsystem when enrolled biometric characteristics are 

presented.  

 Comparison subsystem. The probe is compared to the 

reference which results in a comparison score. This score is 

sent to the decision subsystem. For verification one score is 

generated and for identification a score is generated for every 

image in the reference database.  

 Decision subsystem. Verification and identification 

outcomes are generated by the decision subsystem based on 

comparison scores from the comparison subsystem. Scores 

above a pre-defined threshold will determine if the probe is a 

match (verification) or on a candidate list (identification).  

 

HUMAN PROCESSING AND SYSTEM FUNCTIONS 

 

 Parasuraman et al. (2000) present a simplified human 

information processing model, which defines four stages of 

processing: sensory processing, perception/working memory, 

decision making, and response selection. These four stages of 

human processing are equated to four types of system 

functions: information acquisition, information analysis, 

decision and action selection, and action implementation. For 

each stage of processing and system function we provide 

examples for face and iris biometric modalities to highlight 

differences between humans and algorithms.  

 Sensory processing and information acquisition. Human 

sensory processing includes acquiring information through 

auditory, visual, and tactile cues. Similarly, the first phase of 

information processing for an automated system is information 

acquisition. At this point both the human and automated 

system are processing information relevant to the required task 

in preparation for the next phase of information processing.  

• Humans process faces holistically (Tanaka & Farah, 

1993), algorithms process faces differently depending 

on how the algorithm was developed.  

• In general, humans are unfamiliar with iris patterns 

and do not employ this modality to recognize other 

humans without an algorithm.  

 Perception/memory and information analysis. 

Manipulation, integration, and interpretation of any acquired 

information will occur during the perception stage for humans. 

At this stage humans also store and retrieve relevant 

information from working and long-term memory. Automated 

systems perform information analysis in a similar manner, 

manipulating and integrating relevant data to either present to 

the human operator or act on itself.  

• Humans are highly capable of comparing familiar 

faces but struggle when comparing unfamiliar faces 

(Megreya & Burton, 2006). Algorithms are highly 

capable of comparing faces when appropriate 

reference images are available (Cook et al., 2019). 

• Algorithms can compare iris images. 

 Decision making and decision/action selection. At this 

point the human and automated system have fully processed 

the acquired information and are ready to select one of the 

available options. The number of available options can vary 

depending on the objectives of the system. 

• Humans can decide whether faces match; however, 

algorithms generally match faces at higher levels of 

accuracy (Carragher & Hancock, 2022). 

• Algorithms can decide if iris images are a match with 

high levels of accuracy. 

 Response selection and action implementation. Once a 

decision has been made by the human or the automated 

system, the final phase is the execution of that decision. This 

process varies by task complexity and may require one or 

more actions from the human or automated system.  

• This stage of processing and system function is not 

currently incorporated into the general biometric 

system model as defined by ISO/IEC 19795-1. 

 

BIOMETRIC IDENTITY WORKFLOWS AND 

AUTOMATION DESIGN 

 

 Our review of the general biometric system employed 

the four system functions model to determine appropriate task 

allocation between humans and algorithms for each of the 

defined subsystems. We found that the general biometric 

system incorporates three of the four system functions defined 

by Parasuraman et al. (2000). As previously stated, action 

implementation occurs outside of the biometric system once a 

decision outcome is established.  



 
Figure 1. Application of Parasuraman et al.’s (2000) framework to 

biometric subsystems as defined by ISO/IEC 19795-1. LOAs were 

determined based on the current state of biometric technology. 

Each system function incorporated into the general 

biometric system has uniquely defined LOAs and by 

extension, unique task allocation between teammates 

depending on the biometric identity application (Parasuraman 

et al., 2000). Information acquisition and decision/action 

selection are each mapped to one biometric subsystem leading 

to a relatively simple breakdown of automation levels (Figure 

1). Information analysis is presented with unique LOAs for 

each subsystem, which need to be considered separately. 

LOAs are defined based on the current state of the biometric 

identity field; however, technological advancements will alter 

LOAs. Selection of automation levels is dependent on the 

biometric modality and identity workflow. Across all 

subsystems, the lowest LOA is broadly defined by the human 

completing the task independent of the algorithm.  

 We defined four LOAs for data capture with the anchor 

of high automation defined as the algorithm completing data 

acquisition alone. Within information analysis, signal 

processing is defined by four LOAs, notably the highest LOA 

may still require adjudication by the human as needed. 

Additionally, determination of whether an individual is 

enrolled or unenrolled is never divided between the human 

and algorithm due to differences in processes. The data 

storage and comparison subsystems each have three LOAs. At 

the second LOA both the human and algorithm perform recall 

and complete a comparison (e.g., a security guard remembers 

a person they frequently see pass through an entrance with a 

biometric system). Lastly, we defined eight LOAs for the 

decision subsystem, where the highest LOA may still require 

adjudication by the human. At the fifth LOA, there is an 

increased risk of complacency since the human provides 

approval for a decision made by the algorithm.  

Algorithms generally exhibit high accuracy within the 

comparison subsystem, allowing human operators to add value 

in a complementary manner (e.g., differentiating twins based 

on features the algorithm may not consider). Humans can also 

add value to other subsystems, leading to improvements in 

overall performance. For example, many operational biometric 

identity systems currently employ the highest LOA at the data 

capture stage; however, research has demonstrated that the 

majority of biometric system errors are due to photo capture 

(2021 Biometric Rally Results). Biometric systems with 

operators, should focus human efforts on data capture to 

decrease these types of errors, which could improve system 

performance across modalities (e.g., face, iris, fingerprints).  

  

Automation Determination Flowchart 

 

Based on the automation determination flowchart from 

Parasuraman et al. (2000) we developed a set of criteria 

specific to the automation of a biometric system in the context 

of human-algorithm teaming (Figure 2). Our flowchart 

highlights two sets of criteria to determine an optimal 

automation level for each of the identified system functions 

when applied to a specific type of biometric system. The first 

set of criteria highlights the importance of team performance 

including the human’s cognitive performance, and the second 

set of criteria focuses on broader impact criteria including 

organizational and societal impacts. Both sets of criteria are 



presented as part of an iterative process, where optimization of 

team performance is reached before introducing broader 

impact criteria. 

 
Figure 2. Automation determination flowchart. Shows three relevant 

system functions and criteria for biometric systems based on a review 

of Parasuraman et al. (2000).  

Team performance criteria. We define four categories to 

assess team performance: efficiency, effectiveness, 

equitability, and cognitive performance. These categories 

characterize the performance of biometric identity workflows 

and importantly, provide consideration of the human. 

Assessment of system outcomes (i.e., efficiency, effectiveness, 

and equitability) and the human’s cognitive state allow for 

optimal placement of the human within the workflow.  

Efficiency is defined as the resources (e.g., time and 

staff) required by the biometric system to determine an 

individual’s identity. Effectiveness is the accuracy and 

completeness with which the system can determine an 

individual’s identity. This includes metrics such as failure to 

capture, failure to extract, false positives, and false negatives. 

Equitability is the extent to which the system performance is 

invariant across specific demographic categories and 

biological phenotypes. All these categories are focused on the 

overall team’s performance; however, it is also important to 

separately assess the human’s cognitive performance. 

When incorporating the human’s cognitive performance, three 

key factors must be considered: mental workload, situational 

awareness, and complacency (Parasuraman et al., 2000). 

Pairing a human with an autonomous teammate does not 

guarantee that the human’s contributions or team performance 

will be improved. It is possible for the human to experience an 

increase in mental workload, a decrease in situational 

awareness, and an increase in complacency, which could all 

negatively impact the team’s performance. However, if each 

of these factors are properly assessed alongside the system 

outcomes of efficiency, effectiveness, and equitability then the 

human’s skills can be optimally placed within the workflow.  

Broader impact criteria. Two main categories are 

defined as part of our broader impact criteria: organizational 

and societal impacts. Organizational impacts are defined as 

those which could potentially affect employees and the 

structure of the organization. A key factor of organizational 

impact is the potential for the human to experience skill 

degradation over an extended period if certain tasks have been 

allocated to the algorithm (Parasuraman et al., 2000). 

Additionally, in the context of a biometric identity system, the 

safety of employees could be jeopardized if tasks are not 

correctly allocated between the human and algorithm (e.g., a 

bad actor is allowed to enter a restricted space).  

Societal impacts are defined as those which could have a 

wider effect on society. The cost of an error from a biometric 

identity system could range from minimal (e.g., additional 

time is needed to verify an individual resulting in increased 

wait times) to quite detrimental (e.g., a bad actor carries out an 

attack in a densely populated area). Furthermore, as biometric 

identity systems become more prominent, vast amounts of 

data will be collected, which could lead to privacy concerns 

such as individuals being tracked, or their data being used 

without their consent. Increased use of biometric identity 

systems could also increase equitability concerns related to 

how these systems are applied across different groups 

(Howard et al., 2021).  

Both evaluation criteria are equally important but should 

be implemented in a serial manner. By first implementing 

criteria to optimize team performance, the number of errors 

experienced by a larger population can be mitigated.  

 

USE CASE EXAMPLES 

 

To illustrate the proposed human-algorithm teaming 

framework in Figure 1, we review two use cases where LOAs 

can be minimized or maximized. The presented use cases 

focus on face recognition due to its deployment across various 

applications and humans’ unique ability for innate face 

recognition. The first use case we consider is at an airport 

security checkpoint where security personnel verify a 

traveler’s identity. In this scenario, a human operator adds 

value to the data capture (could be set to level 3) and signal 

processing (could be set to level 4) subsystems by reviewing 

the algorithm’s capture and image quality assessment. The 

algorithm adds value to the data storage, comparison, and 

decision subsystems (each subsystem could be set to the 



highest LOA). Specifically, consider when a probe image is 

captured in real time and compared to the presented 

identification card. The human operator adds value through 

contextual awareness by quickly recognizing and handling 

exceptions (e.g., confirm the individual is not wearing a mask 

or sunglasses, which impact biometric matching). However, 

humans do not perform well with unfamiliar face matching 

under a time constraint. The algorithm can quickly and 

accurately complete the comparison to the reference image on 

the identification card and decide if the probe is a match. In 

this use case, task allocation employs each teammate’s 

strengths to keep travelers moving through the checkpoint 

efficiently while maintaining a high level of security. 

A contrasting use case to consider is a forensic examiner 

tasked with identifying a suspect based on multiple pieces of 

information including images of suspects captured at different 

angles. The data capture and data storage subsystems are out 

of scope for this use case. The signal processing subsystem 

could be set to the highest LOA. The comparison subsystem 

could be set to an automation level of 2, where both the human 

and algorithm complete the comparison. The decision 

subsystem could be set to level 3, the algorithm may return a 

candidate list of potential matches based on the facial 

comparison. Examiners will then follow a structured set of 

guidelines to determine if any of the candidates are a true 

match (FISWG, 2018; 2022). They may use additional 

information, such as distinctive scarring, tattoos, marks, or 

other physical features on a suspect’s arm and a timeline of 

relevant events. Here the human adds significant value to the 

subsystem’s performance due to their ability to incorporate 

this additional information into the final decision. 

Furthermore, the ability to explain the decision-making 

process is crucial and currently an ability unique to humans.  

 

CONCLUSION 

 

We present an automation determination framework 

based on Parasuraman et al.’s (2000) model and adapted it for 

biometric systems as defined by ISO/IEC 19795-1. We 

consider the entire biometric system to determine LOAs on a 

more granular level. The defined LOAs are based on the 

current state of technology and aim to optimize placement of 

the human within the workflow. Appropriate utilization of the 

human’s skills not only improves the cognitive state of the 

human but can also improve the overall performance of the 

biometric system. While biometric research has primarily 

focused on the forensic scenario, there is a need to address use 

cases which involve a large portion of the general population 

(e.g., airport security checkpoints, accessing restricted areas, 

etc.). As advancements in technology across fields continue, it 

is important to consider human-algorithm teams and the 

possibility of the human in a non-supervisory role.   
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