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Abstract. Automated face recognition algorithms generate encodings
of face images that are compared to other encodings to compute a similar-
ity score between the two originating face images. These face encodings,
also known as feature vectors, contain representations of various facial
features. Some of these facial features, but not all, have been shown to
resemble each other across di�erent subjects that happen to share a de-
mographic group assignment, such as having the same race or gender.
Recent work has shown that these demographically dependent features
can increase similarity scores between di�erent individuals who belong to
the same demographic group compared to similarity scores for di�erent
individuals in di�erent groups. When one feature vector is compared to
many other feature vectors, as in identi�cations, this e�ect, referred to
as �demographic clustering�, can lead to un-equal false positive identi-
�cation error rates for di�erent demographic groups. In this study, we
propose a method of mitigating this clustering e�ect from face recogni-
tion algorithms to reduce these un-equal error outcomes. Our method
presumes that feature space patterns shared within demographic groups
can be removed while preserving other distinct features of individuals. In
this paper, we prove that this is possible, in principle, by applying linear
dimensionality techniques to the feature space of two ArcFace face recog-
nition algorithms. We show this method increases four distinct �fairness�
measures while preserving useful true match rates.

Keywords: Face Recognition · Demographic Di�erentials · Disparate
Impact · Fairness.

1 Introduction

In the 2010s, face recognition algorithms signi�cantly improved in accuracy due
to advances in deep learning methods in computer vision. Speci�cally, the intro-
duction of deep convolutional neural networks (DCNNs) to the face recognition
task achieved near human performance for the �rst time in 2014, with an accu-
racy of 97.35% on the Labeled Faces in the Wild (LFW) dataset [18, 26]. The
following year, a modi�ed DCNN architecture achieved �better-than-human� per-
formance on the same task (accuracy of 99.63%) [25]. By 2020, government tests
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of face recognition algorithm performance documented false positive outcomes
occurring on 3 out of every 1000 searches, and false negative rates nearing 1 in
1000, when searching galleries of up to of 12 million individuals [10].

These impressive error rates on large galleries may lead advocates of face
recognition technology to claim that face recognition is a solved problem. While
there are many means to dispute such claims (ageing, gallery size, pose, etc.) [10],
one aspect of face recognition regularly receives far less attention than these well-
studied problems. Face recognition algorithms have been shown to routinely
judge that di�erent individuals, who happen to share gender, race, age, and
country of origin designations are more similar than individuals who don't share
these categories [17] [11]. This group similarity e�ect has been given di�erent
names, �rst �broad homogeneity� in [15], then �demographically matched in-
dividuals� in [11], and �imposter pairs across homogeneous and heterogeneous
categories� in [8] (we will use the �rst term in this manuscript).

Regardless of nomenclature, broad homogeneity was shown in Annex 5 of [11]
to exist in all of the 138 facial recognition algorithms submitted as part of
this global face recognition evaluation in 2019. Furthermore, there seems to
be an acceptance, both in the research and commercial communities, that face
recognition algorithms should behave in this manner, despite these e�ects being
unique to face recognition and decidedly not present in other common biomet-
ric modalities, such as �ngerprint and iris recognition. Of additional concern
are the mathematics �rst highlighted in [17] and later in [5] that show, in the
presence of broad homogeneity e�ects and imbalanced facial recognition identi-
�cation galleries, a strong tendency for un-equal identi�cation error rates across
demographic groups.

For these reasons, we contend broad homogeneity e�ects to be an undesir-
able, but unfortunately, currently universal, characteristic of face recognition
algorithms. Additionally, methods to reduce this e�ect are presently under-
researched. This manuscript presents one such method that removes demograph-
ically clustered components of the facial biometric feature vector (also known as
the face template) that cause broad homogeneity e�ects. We demonstrate the
utility of this approach on two disjoint datasets of test subjects who self reported
their gender and race a�liations. We further show that, after applying this tech-
nique, each of four currently proposed facial recognition fairness metrics shows
an improvement.

2 Background

2.1 Broad versus Speci�c Homogeneity Fairness Criteria

A face veri�cation operation involves a one-to-one comparison of two face im-
ages. Images are �rst converted to face feature vectors within a p-dimensional
feature space. Two face feature vectors can then be mathematically compared
to compute a similarity score that represents the similarity between the two
originating face images. If the resulting score is greater than some threshold
τ , the algorithm is indicating that the original face images are from the same
person. A false match error occurs when an algorithm produces a score greater
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than τ for two face images that, in fact, were from di�erent people (also known
as a non-mated pair). False match rate (FMR) is the frequency with which a
false match error occurs in all possible non-mated image pairs within a given
evaluation dataset.

When considering the �fairness� of facial recognition systems in regards to
FMR, [17] introduced two separate criteria to consider. Brie�y, the �rst, termed
�speci�c homogeneity fairness criteria�, stipulated that FMR measured within
demographic group should be equal for each group, but that FMR measured
between di�erent groups could still take a di�erent (presumably lower) value.
For example, the false match rate when Black Males are compared to other Black
Males would equal the false match rate when White Females were compared to
other White Females (FMR(WM,WM) == FMR(BM,BM)) but the false match rate
between Black Males and White Males may be lower than the false match rate
between Black Males (FMR(WM,BM) < FMR(BM,BM)). That a face recognition
algorithm would operate in this way is intuitive to humans because human facial
recognition processes behave in this way as well.

However, [17] also demonstrated (along with [5]) that, should speci�c ho-
mogeneity fairness criteria be the goal, disparities in face recognition identi�-
cation (one-to-N) error rates could still persist, particularly in the presence of
demographically imbalanced identi�cation galleries. For this reason [17] advo-
cates for a second criteria for assessing facial recognition systems in regards to
FMR, the �broad homogeneity fairness criteria�. This criteria states that the false
match rate for cross demographic groups should equal the FMR of within demo-
graphic groups. Using our previous example, in this model FMR(WM,WM) ==
FMR(BM,BM) == FMR(WM,BM). This face recognition algorithm would operate
in a way that is un-intuitive to humans, as it would confuse White Males for
Black Males equally often as it would confuse White Males for other White Males.
However, a face recognition algorithm that operated in this fashion may be able
to achieve metrically more fair identi�cation outcomes. Graphic descriptions of
the speci�c and broad homogeneity fairness criteria are shown in Figure 1A and
B, respectively.

2.2 Achieving Broad Homogeneity

As stated, demographic clustering e�ects were found to exist in every face iden-
ti�cation algorithm tested in [11]. With such an ubiquitous e�ect, one might be
inclined to think it a natural characteristic of face recognition in general. How-
ever, [17] showed that only a small portion of the information content available
in a human face appears to be consonant across di�erent people within gender
and race categories. On �ve separate leading commercial face recognition algo-
rithms, [17] found that just 10% of the variation in non-mated similarity score
could be attributed to race and gender clustering. This suggests that if a face
recognition algorithm ignored these clustering components, it may be able to
achieve broad homogeneity while still maintaining useful levels of performance.

One limitation of [17] was that it measured these grouping e�ects only in sim-
ilarity scores between individuals, i.e. the �score space�. The researchers achieved
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Fig. 1. Examples of cohort matrices that demonstrate fair false match rates (FMR)
across demographic groups according to A) the speci�c homogeneity fairness condition
and B) the broad homogeneity fairness condition. Example cohorts are Black Female
(BF), Black Male (BM), White Female(WF), and White Male (WM), although the
concept applies to categorical demographic groups generally.

.

this by performing eigenvalue decomposition on a matrix of cross subject similar-
ity scores, as produced by each commercial algorithm. This technique is useful
for measuring the magnitude of demographic clustering across algorithms. It
could also potentially be useful for removing demographic clustering on a static
population of identities, such as an access control scenario where every individual
attempting to interact with a system is known and the population is relatively
stable. However, removing demographic clustering in score space is not practical
for algorithms meant to operate on dynamic populations, such as a system where
new enrolles are frequent or where out-of-gallery or non-mate comparisons are
frequent. This is because the speci�c identities in the database form the basis
of score space and correction relies on removing patterns across these identities,
not across face features. Furthermore, this correction necessitates establishing
demographic group membership of each identity in the sample.

To adapt to the dynamic setting, one must develop a transformation that
when computed on one set of subjects can be successfully applied to a disjoint set,
i.e. a generalized transformation. Here, we will show that such a transformation
can be computed using the p-dimensional feature vectors of face recognition
algorithms. We will also show that transformations derived from this space can
be applied to the embeddings generated from identities not in the original set
and that when error rates and comparison scores generated from the original
and transformed features are evaluated, fairness measures consistently improve.

3 Methods

3.1 Dataset

Three sets of images/subjects are used in this research. The �rst, referred to
as `S1', is a demographically balanced set. S1 contains one image per subject
across 600 unique subjects (exactly 150 per demographic group). The second
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set, referred to as `S2', is a disjoint set of subjects. No subject in S1 is present
in S2. The S2 dataset contains one image per subject across 192 unique subjects
(approximately 50 per demographic group, but in some cases less). The third
set, referred to as `S3' is a set of mated image pairs to subjects in S1. The
purpose of S3 is to validate that our transforms (see Section 3.3) do not corrupt
face templates to the point that matching transformed templates to other mated
pairs is no longer possible. S3 is not intended to validate transforms that reduce
demographic clustering. S3 contains between 1-6 images per subject across 466
unique subjects. Not all subjects in S1 had a corresponding mated image. All
datasets were collected by a trained biometric collection operator, minimizing
any issues related to image acquisition quality. All samples were collected at
biometric scenario evaluations that took place from 2018-2021 [1] [13].

The disjoint property of S1 and S2 is a purposeful and important charac-
teristic. Simply because two subjects identify into the same demographic group,
White Male for example, does not signify that they necessarily share similar fa-
cial features. S1 and S2 may therefore have legitimately di�erent patterns with
respect to face features, despite having the exact same demographic groups.

Table 1. Number of subjects and samples for datasets used in this research.

Dataset
Subjects (Samples)

Black Female Black Male White Female White Male

S1 150 (150) 150 (150) 150 (150) 150 (150)

S2 50 (50) 50 (50) 49 (49) 43 (43)

S3 106 (300) 117 (339) 126 (321) 117 (278)

3.2 ArcFace Face Recognition Algorithm

In 2019, Deng et al. [4] proposed and open-sourced a new face recognition loss
function named ArcFace that reached the state-of-the-art veri�cation accuracy
of 99.83% on the LFW dataset. The ArcFace algorithm belongs to a family of
'margin-based' loss functions that apply margins to their logits to encourage class
separability. ArcFace's predecessors, such as SphereFace [21] and CosFace [27],
introduced this concept of penalizing class centers in the angular space using
margins. ArcFace expanded on these techniques by introducing an additive an-
gular margin loss that improves the compactness of intra-class samples and the
separation of inter-class samples in the face embedding space.

A face recognition model trained with ArcFace loss was chosen for this study
for three reasons. First, the techniques we outline here require �white-box� al-
gorithms, where the feature space can be interpreted. In many commercial face
recognition algorithms, this is not possible. Second, a model trained with ArcFace
has been shown to be one of the highest-ranking, open-source, face recognition
algorithms in 1-to-1 comparisons according to NIST's 2021 Face Recongition
Vendor Test (FRVT) [10]. Third, the developers of ArcFace open-sourced sev-
eral pre-trained models [20].

In this work we leverage two pre-trained models obtained from [20]. The �rst
is a ResNet-100 [14], trained on a re�ned version of the MS-Celeb-1M dataset [12]
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(referred to here as �ArcFace-MS1MV2�). This is the model that was evaluated
in FRVT. We also utilize a second model that is an iResNet-100 [6] trained on
the Glint360k dataset [2] (referred to here as �ArcFace-Glint360k�). This model
is an improvement over the initial ArcFace-MS1MV2 model submitted to FRVT,
both in terms of the training dataset and the architecture used. The Glint360k
dataset is much larger and more demographically diverse than MS-Celeb-1M,
which when used to train the iResNet architecture led to better performance
reported across demographic groups according to [20].

3.3 Identifying And Removing Demographic Clustering in Feature
Vectors

The S1 and S2 face samples described in Table 1 were processed using both the
ArcFace-MS1MV2 and ArcFace-Glint360k algorithms producing a set of 1584
feature vectors. No failure to process errors occurred. ArcFace feature vectors
are 512-dimensional. However, in general the techniques described here apply to
any arbitrarily length feature vector v ∈ R1×p.

Identifying Demographic Clustering We �rst use the n = 600 samples
in dataset S1 to identify feature vectors that exhibit demographic clustering
using the following approach. First, we normalize the feature vectors such that
v̂ = v̄

‖v̄‖ . We then construct a normalized matrix of feature vectors for n subjects

V̂ , where V̂ ∈ Rn×p. This matrix can be decomposed into its subject and feature
speci�c components using singular value decomposition (SVD). The singular
value decomposition of feature matrix V̂ is de�ned by V̂ = UΣWT , where
U ∈ Rn×n, Σ ∈ Rn×p, and WT ∈ Rp×p.

Given the matrix of subject speci�c components, U , and the demographic la-
bels for each feature vector (see Table 1), we identify which components cluster
by demographic group by calculating the clustering index [17] shown in Equa-
tion (1). Ck describes the percent of variance in subject-speci�c component k
that is explained by race and gender features. Ck is calculated by taking the ra-
tio of within group variance for a demographic group D (

∑
D

∑
i∈D(ui − ūD)2)

and dividing by the overall variance in the subject-speci�c component space
(
∑
i(ui − ū)2). In this model, if component k had subjects spread over the full

space in equal proportion to the variance of that space, both numerator and
denominator would be equal and Ck = 0. However, if subjects in a group D are
spread over less than the full component space, i.e. cluster in that space, the
numerator becomes less than the denominator and Ck rises.

Ck = 1−
∑
D

∑
i∈D(ui − ūD)2∑
i(ui − ū)2

, k, i ∈ {1, ..., n} (1)

Empirically, every Ck is bound to have a non-zero value due to noise in the
feature space, therefore we must identify which components have a statistically
signi�cant clustering indices. To evaluate the signi�cance of each clustering in-
dex we generate a null distribution Cnull by randomly shu�ing each subject's
demographic labels and calculating Ck; this is repeated 1000 times to generate
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the distribution of Ck values. We then de�ne statistically signi�cant features to
be those with Ck values greater than the 99th percentile of the Cnull distribution.

We note that the use of the linear SVD method limits us to only remov-
ing clustering based on linear relationships within groups. Removing non-linear
clustering will require the use of non-linear decomposition techniques and is the
focus of future research.

Removing Demographic Clustering Once identi�ed, features that exhibit
signi�cant demographic clustering in the encoded subject space (U) can be re-
moved from the encoded feature space (WT ). The result of this reduced matrix
is Ŵ , where Ŵ ∈ Rp×m, and m = p− r. The r components are identi�ed from
R = {Ui...Ur}. Using the reduced matrix Ŵ , we can reconstruct a modi�ed fea-
ture vector v̇ for any arbitrary v by applying the transformation v̇ = vŴŴT .
If the components of R were appropriately selected, the reconstructed feature
vector v̇ should have reduced demographic clustering and thus reduced overall
speci�c homogeneity e�ects.

This technique speci�cally is an extension of the method proposed in [17], in
which a similar transformation is performed in the score space using the eigen-
value decomposition of the similarity matrix S. More broadly, this is a modi-
�cation on a widely used pattern for dimensionality reduction using SVD [24].
Our novel contributions are the application of this approach to biometric feature
vectors and the selection mechanism using the clustering index Ck.

3.4 Biometric Fairness Metrics

To evaluate the e�cacy of our proposed method, we apply four biometric fairness
metrics to quantify the method's ability to reduce demographic bias. The four
fairness metrics include the Net Clustering metric from [17], the Gini Aggregation
Rate for Biometric Equitability (GARBE) from [16], the Fairness Discrepancy
Rate (FDR) from [23], and the NIST Inequity Ratio from [9].

The Net Clustering metric [17], de�ned in Equation 2, measures the propor-
tion of total variance in the feature vectors explained by demographic clustering,
where Ck is the clustering index de�ned in Section 3.3, σ2

k is the variance of the
kth feature, and σ2

net is the total variance in the feature vectors. For the Net
Clustering metric, a value closer to zero indicates a more �fair� algorithm.

Cnet =
1

σ2
net

∑
k

σ2
kCk (2)

The GARBE metric [16] is a fairness measure inspired by the Gini coe�cient,
a historical measure of dispersion often used in measuring wealth inequality [7].
In [16], the Gini coe�cient is applied to biometric error rates, speci�cally the false
match rate (FMR) and false non-match rate (FNMR) across demographic group
D, as shown in Equations (3) to (5). As an extension of the Gini coe�cient,
GARBE combines measures of FMR and FNMR dispersion using a weighing
factor α as shown in Equation (5). Similarly to Net Clustering, a value closer to
zero indicates a more fair algorithm according to the GARBE metric.
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Gx =

(
n

n− 1

)(∑n
i=1

∑n
j=1 | xi − xj |
2n2x̄

)
∀di, dj ∈ D (3)

A(τ) = GFMRτ ; B(τ) = GFNMRτ (4)

GARBE(τ) = αA(τ) + (1− α)B(τ) (5)

The Fairness Discrepancy Rate (FDR) [23] is made up of two values: the
�rst, shown in Equation (6), measures the maximum di�erence in FMR values
between demographic groups D for a given threshold τ and the second, shown in
Equation (7), measures the maximum di�erence in FNMR between demographic
groups at the same threshold τ . As in Equation (5), Equations (6) and (7) are
mixed with the hyper-parameter α and subtracted from 1 to form the Fairness
Discrepancy Rate shown in Equation (8). Unlike other fairness metrics, the FDR
metric increases as �fairness� increases, meaning a value closer to 1 is more
desirable.

A(τ) = max(|FMRdi(τ)− FMRdj (τ)|) ∀di, dj ∈ D (6)

B(τ) = max(|FNMRdi(τ)− FNMRdj (τ)|) ∀di, dj ∈ D (7)

FDR(τ) = 1− (αA(τ) + (1− α)B(τ)) (8)

The NIST Inequity Ratio takes the maximum di�erence in FMR and FNMR
values into account as a ratio as shown in Equations (9) and (10). This approach
then proposes multiplicative and exponential scaling by risk ratios α and β as
opposed to additive scaling as shown in Equation (11).

A(τ) =
max(FMRdi(τ))

min(FMRdj (τ))
∀di, dj ∈ D (9)

B(τ) =
max(FNMRdi(τ))

min(FNMRdj (τ))
∀di, dj ∈ D (10)

INEQ(τ) = A(τ)αB(τ)β (11)

We note a special case of the Inequity Ratio is to only calculate this ratio
when i == j ∀di, dj ∈ D, essentially calculating the ratio across the diagonal
of a cohort matrix (see Figure 1). We refer to this measure as INEQ(τ)?.
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4 Results

Before applying the transform to the feature vectors, we performed comparisons
and calculated false match rates for both the S1 and S2 datasets, resulting in
360,000 and 36,864 comparisons respectively. We found that threshold values of
0.647 and 0.635 produced a false match rate of 1e−3 globally across the S1 dataset
for comparisons performed by ArcFace-MS1MV2 and ArcFace-Glint360k, respec-
tively. We use a global false match rate of 1e−3 to represent the use case of access
control or small gallery matching at border exit and entry sites [22]. For the dis-
joint S2 set, threshold values of 0.657 and 0.635 produced the same false match
rates, again respectively. Cross comparisons between untransformed S1 and S3
sets produced a mated comparison set of 1,238. Of these, one similarity score
was below the respective S1 dataset thresholds for the ArcFace-MS1MV2 and
ArcFace-Glint360k algorithms (FNMR = 8.1e−4).

Two experiments were then performed to evaluate the proposed transform's
ability to remove clustering. In Experiment 1, the de-clustering transform is
calculated from the S1 dataset and evaluated on the S1 dataset. In Experiment
2, the transform calculated in Experiment 1 is applied to the S2 dataset to
test the ability of de-clustering on a disjoint set. In these experiments, when
evaluating fairness measure outcomes for metrics with hyper-parameters, we set
α to 1 and β to 0. This focuses the measure on variations in false match rate,
which are material to broad homogeneity e�ects.

4.1 Experiment 1 - De-clustering Learned and Applied to the Same
Dataset

The �rst experiment's purpose is to show that the transform described in Sec-
tion 3.3 is capable of removing demographic clustering e�ects and increasing
fairness from the same dataset the transform is derived from. This is a �rst-
order check that this technique may be useful more broadly. Before applying the
de-clustering transformation, at a population FMR of 1e−3 the Black Female
cohort-speci�c FMR was the largest at 9.75e−3 and the FMR for the White Male
cohort was the smallest at 6.26e−4. Note the Black Female FMR is roughly 10x
larger than the population FMR and the White Male FMR is roughly half of
the population FMR. The ratio between the max and min within cohort FMRs,
is a factor of roughly 15 (INEQ(τ)? = 9.75e−3/6.26e−4 = 15.58).

Once the transform is applied to the ArcFace-MS1MV2 templates, this dis-
persion is noticeably reduced, with the highest FMR still belonging to the Black
Female cohort but now at a rate of 1.34e−3 (1.34x larger than the population
FMR) and the lowest FMR still belonging to the White Male cohort but now
at a rate of 3.58e−4 (35% of the population FMR). The full FMR spectrum is
shown in Figure 2. Accordingly, every biometric fairness measure introduced in
Section 3.4 moved in a �more fair� direction after the transform (see Table 2).

A similar e�ect was observed when applying the de-clustering transforma-
tion to the ArcFace-Glint360k templates. Despite being trained on a larger,
more diverse dataset, templates generated with this ArcFace model still had a
noticeable spread in FMR. At a population FMR of 1e−3 the FMR of the Black
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Fig. 2. A) False match rates across demographic groups before removing demographic
clustering from ArcFace-MS1MV2 templates on S1 dataset. B) False match rates across
demographic groups after removing demographic clustering from ArcFace-MS1MV2
templates on S1 dataset.

Female cohort was again the highest at 8.66e−3, 8.6x higher than the disag-
gregated measure. The FMR for White Males was again the lowest at 5.37e−4

or roughly half of the disaggregated measure. The ratio between these disaggre-
gated FMRs is on a similar scale to the ratio observed in the MS1MV2 templates
(INEQ(τ)? = 8.66e−3/5.37e−4 = 16.23).

Fig. 3. A) False match rates across demographic groups before removing demographic
clustering from ArcFace-Glint360k templates on S1 dataset. B) False match rates across
demographic groups after removing demographic clustering from ArcFace-Glint360k
templates on S1 dataset.

After applying the transform described in Section 3.3, all within cohort
FMR's were within an order of magnitude of each other. The highest FMR
now belonged to the Black Male cohort at 9.84e−4 and the lowest FMR still
belonged to White Males at 2.68e−4. Importantly, this spread is only a factor of
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roughly 4x. Accordingly, all biometric fairness measures outlined in Section 3.4
improved (see Table 2).

4.2 Experiment 2 - De-clustering Learned on One Dataset and
Applied to a Disjoint Dataset

While encouraging, the results in Section 4.1 are of limited utility if they do
not generalize beyond the subjects used to learn the de-clustering transform.
Ideally, a transform Ŵ (See Section 3.3) would apply to other subjects with
similar demographics. To test this capability, a second experiment using a Ŵ
learned from S1 was applied to the dataset S2. Recall, there is no subject overlap
from S1 to S2, although there is demographic overlap (see Section 3.1). Prior
to transform, at a population FMR threshold of 1e−3, the FMR for the Black
Female cohort was the highest at 8.98e−3 and the FMR for White Males was
lowest at 0, using the ArcFace-MS1MV2 templates. The FMR for the second
lowest cohort, White Females, was 8.5e−4, making the best calculable spread
ratio roughly an order of magnitude (INEQ(τ)? = 8.98e−3/8.5e−4 = 10.56).

When the transformation, derived from the S1 dataset, is applied to the
disjoint S2 dataset, we again see a decrease in error-rate disparity for FMR as
shown in Figure 4. While the correction is smaller in magnitude than when it
was when learned and applied within S1 (as expected), the decrease shows that
the transformation can be generalized to an extent to feature vectors derived
from unseen faces. After the de-clustering transform, the highest FMR was still
for black females at 7.35e−3. The lowest, non-zero FMR is for White Males,
at 1.11e−3. This factor of INEQ(τ)? ≈ 7 is an improvement on the spread ob-
served before the transform. All other biometric fairness measures outlined in
Section 3.4 also improved (see Table 2).

Fig. 4. A) False match rates across demographic groups before removing demographic
clustering from ArcFace-MS1MV2 templates on S2 dataset. B) False match rates across
demographic groups after removing demographic clustering from ArcFace-MS1MV2
templates on S2 dataset.
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A similar e�ect was observed when applying the de-clustering transforma-
tion, derived from the S1 dataset, to the ArcFace-Glint360k templates in S2.
Originally in the S2 dataset, at a population FMR of 1e−3, the Black Female
cohort experienced a FMR of nearly 10x that rate (1.06e−2). The lowest FMR
was experienced by the White Male group at 0 and the second lowest by the
White Female group at 8.5e−4. The spread ratio between the highest and lowest
calculable within cohort FMRs is thus (INEQ(τ)? = 1.06e−2/8.5e−4 = 12.5).
After the de-clustering transform is applied all within cohort FMR's were within
an order of magnitude of each other. The highest FMR was still for the Black
Female cohort at 4.08e−3 and the lowest non-zero FMR was for White Males
at 1.11e−3, leading to a INEQ(τ)? of 4x. All other biometric fairness measures
outlined in Section 3.4 also improved (see Table 2).

Fig. 5. A) False match rates across demographic groups before removing demographic
clustering from ArcFace-Glint360k templates on S2 dataset. B) False match rates across
demographic groups after removing demographic clustering from ArcFace-Glint360k
templates on S2 dataset.

The de-clustering transform derived from the S1 dataset, on both algorithms,
was also applied to feature vectors in the S3 dataset and mated similarity scores
between S1 and transformed S3 were calculated. Of 1,238 mated comparisons,
one had a similarity score below the S1 non-transformed threshold, giving an
FNMR = 8.1e−4. Upon further inspection this one false non-match was for
a subject who's clothing had a distractor face, meaning the true FNMR for
both the transformed and untransformed templates was likely 0. FNMRs at
these levels con�rm the feature vector transform documented here both improves
fairness (see Table 2) while preserving useful true match rates.

5 Discussion and Conclusions

5.1 Summary

In this research, we've shown that the clustering index metric can be used to mea-
sure demographic clustering in the space of face recognition feature vectors. We
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Table 2. Fairness metric values calculated on the training (S1) and test (S2) datasets,
using the ArcFace-MS1MV2 and ArcFace-Glint360k algorithm, before and after de-
mographic clustering correction. Optimal fairness measures for each experiment are
shown in bold. Note that fairness measures universally move in a �more fair� direction
(increasing for FDR, decreasing for Net Clustering, GARBE, and NIST INEQ) once
the demographic clustering correction method from Section 3.3 is applied.

Algorithm
Fairness Experiment 1 Experiment 2

Metric S1 Original S1 Transformed S2 Original S2 Transformed

ArcFace-MS1MV2

Net Clustering 0.0163 0.00549 0.0252 0.0207

GARBE 0.8540 0.65000 0.922 0.909

FDR 0.9900 0.99900 0.991 0.993

INEQ 219.00 30.2000 22.00 18.00

INEQ? 15.58 3.74 10.56 6.62

ArcFace-Glint360k

Net Clustering 0.0150 0.00497 0.0250 0.0197

GARBE 0.8350 0.67100 0.955 0.881

FDR 0.9910 0.99900 0.990 0.996

INEQ 199.00 22.1000 12.5 10.20

INEQ? 16.23 3.67 12.47 3.68

then show how we can use this knowledge to form a matrix transformation that
removes feature vector components that exhibit demographic clustering from a
disjoint test set of feature vectors. Applying this transformation decreases the
disparity in false match rates across demographic groups. As evidence of this,
we show increases in four published �fairness� metrics. We replicate these �nd-
ings across two, separately trained biometric algorithms, ArcFace-MS1MV2 and
ArcFace-Glint360k. We believe this is evidence of this approaches generalizability
and utility.

5.2 Impact On Human & Algorithm Identi�cation Work�ows -
Why Does this Matter?

When performing face identi�cations in practice, it is common to use a face
recognition algorithm to generate similarity scores between a probe image and
a gallery of images. The results are then ranked by decreasing similarity score
and down-selected to include only the top n possible matches, referred to here
as a "rank-n candidate list". This candidate list is then passed on to a human
adjudicator whose task is to choose the image from the list that matches the
probe subject.

Broad homogeneity e�ects in the identi�cation context mean that the can-
didate list will consist largely of subjects belonging to the same demographic
group as the probe subject. This consequently makes the identi�cation task for
the human more di�cult, which can result in errant outcomes.
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To explore the broad homogeneity e�ect in an identi�cation operation, we
performed identi�cations for the 466 subjects in the S3 dataset against the 600
subjects in the S1 dataset and ranked them by their similarity scores. This pro-
cess was performed for both the original and transformed ArcFace-MS1MV2
face templates. In Figure 6 we show two, Rank-3 candidate lists resulting from
the identi�cation of two subjects; one list generated using the original face tem-
plates, Figure 6A-B, and the other generated using the transformed templates,
Figure 6C-D. To simulate what the human adjudicator would see in the identi�-
cation process we embed a mated image amongst the Rank-3 non-mated images
in a random position.

Fig. 6. (A-B) Rank-3 Candidate lists, with mated images inserted at random, for
two subjects in S3 dataset compared against images in S1 dataset for non-transformed
ArcFace-MS1MV2 face templates. (C-D) Rank-3 Candidate lists, with mated images
inserted at random, for two subjects in S3 dataset compared against images in S1
dataset for transformed ArcFace-MS1MV2 face templates. (E) Percentage of homo-
geneity in Rank-3 identi�cation results.

For both of the non-transformed candidate lists in Figure 6A-B, we note
that all subjects included in the list are of the same demographic group. After
applying the transform, the candidate list for one probe changed from a de-
mographically homogeneous list in Figure 6A, to demographically diverse list
in Figure 6D. We also note that the demographic homogeneity for the other
candidate list, Figure 6C, did not change after applying the transformation,
highlighting that future work in developing more sophisticated transformations
is needed. Despite the remaining homogeneity of some candidate lists in this
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experiment, we do note an 11% decrease in the percentage subjects belonging to
the same demographic group within the Rank-3 results, as seen in Figure 6E.

5.3 Further Research

This research demonstrates that broad homogeneity e�ects can be reduced by
removing components of the face feature vectors that show demographic cluster-
ing. However, due to the limited size of the datasets used here, we suggest further
analysis is needed to con�rm the e�ectiveness of the proposed method on larger,
open-source identi�cation galleries comparable to those used in practice. We also
suggest analysis of the proposed method on face recognition models trained with
other loss functions, such as CurricularFace [19] or ElasticFace [3], as well as the
evaluation of the approach when α and β parameters for the fairness metrics
vary.

In addition to the use of larger identi�cation galleries and other loss func-
tions, we intend to experiment with integrating the proposed methodologies into
the deep neural network training procedures. This avenue of research involves
the development of loss functions designed to limit the e�ects of demographic
clustering during the training of a face recognition algorithm. We hope that the
applications of this research increases focus in the biometrics community on the
development of more equitable systems.
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