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Abstract. The accuracy of face recognition algorithms has progressed
rapidly due to the onset of deep learning and the widespread availability
of training data. Though tests of face recognition algorithm performance
indicate yearly performance gains, error rates for many of these sys-
tems di�er based on the demographic composition of the test set. These
�demographic di�erentials� have raised concerns with regard to the �fair-
ness� of these systems. However, no international standard for measuring
fairness in biometric systems yet exists. This paper characterizes two pro-
posed measures of face recognition algorithm fairness (fairness measures)
from scientists in the U.S. and Europe, using face recognition error rates
disaggregated across race and gender from 126 distinct face recognition
algorithms. We �nd that both methods have mathematical characteris-
tics that make them challenging to interpret when applied to these error
rates. To address this, we propose a set of interpretability criteria, termed
the Functional Fairness Measure Criteria (FFMC), that outlines a set of
properties desirable in a face recognition algorithm fairness measure. We
further develop a new fairness measure, the Gini Aggregation Rate for
Biometric Equitability (GARBE), and show how, in conjunction with
the Pareto optimization, this measure can be used to select among al-
ternative algorithms based on the accuracy/fairness trade-space. Finally,
to facilitate the development of fairness measures in the face recognition
domain, we have open-sourced our dataset of machine-readable, demo-
graphically disaggregated error rates. We believe this is currently the
largest open-source dataset of its kind.
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1 Introduction

Facial recognition is the process of identifying individuals using the physiologi-
cal characteristics of their face [24]. Humans perform such tasks regularly, using
dedicated neural pathways that are part of the larger human visual system [10].
In 2014 convolutional neural nets were �rst applied to the face recognition prob-
lem, allowing them to achieve near human performance for the �rst time [29].
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Subsequently, public facing deployments of face recognition have been increasing
steadily. However, there are also long standing reports of face recognition per-
formance varying for people based on their demographic group membership [4,
14, 16, 21, 22, 27]. Of particular concern is the notion that false match rates in
face recognition may run higher for certain groups of people, namely African
Americans [16, 22].

In response, there has been considerable work around how to train and sub-
sequently demonstrate a �fair� face recognition algorithm [2, 6, 12, 23, 31]. To
address the latter, two de�nitions of �fairness� in face recognition applications
were proposed by scientists seeking to quantify the equitability, or lack thereof, of
various face recognition algorithms. The �rst, Fairness Discrepancy Rate (FDR),
was proposed by scientists from the Idiap Research Institute, a Swiss arti�cial
intelligence laboratory with a long history of contribution to the �eld of biomet-
rics [25]. The second, called the Inequity Rate (IR), was proposed by scientists
from the U.S. National Institute of Standards and Technology (NIST) [13], a
leading scienti�c body with over 60 years of biometric test and evaluation expe-
rience.

However, to date, neither of these techniques has been extensively utilized
in practice or audited using a large corpus of actual face recognition error rates.
Further, there has been relatively little work to understand the utility of these
measures for scoring the fairness of deployed algorithms or for selecting among
alternative algorithms during procurement. To address these gaps, we apply
these two fairness measures to error rates disaggregated across race and gen-
der demographic groups from 126 commercial and open source face recognition
algorithms. We assess their interpretability along three criteria, which we have
termed the Functional Fairness Measure Criteria (Section 3.4). Finding no cur-
rent measure meets all three of these criteria, we developed a new technique
based on the Gini coe�cient and coined the term the Gini Aggregation Rate for
Biometric Equitability, or GARBE (Section 3.5) to describe it. We show how
this measure can be used as part of a down-select protocol that also leverages
Pareto optimization (Section 3.6). Finally, we discuss the lack of data currently
available to developers of fairness measures so that audits of this kind can be
executed. As a partial remedy for this, we have open-sourced our dataset of
machine-readable, demographically disaggregated error rates. We believe this is
currently the largest open-source dataset of its kind.

2 Background

2.1 Face Recognition

Face recognition algorithms operate by generating numerical representations of
faces, referred to as templates. Two face templates can then be compared to
produce a similarity score s and if s is greater than some discrimination thresh-
old τ the corresponding faces are declared to be a �match� by the algorithm.
This process can be used in both identi�cation tasks, where an unknown probe
face is matched to a gallery of faces, and face veri�cation tasks, where a single
face is matched to a claimed identity. The false match rate and the false non-
match rate are two error rates used to measure the foundational accuracy of face
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recognition algorithms. The false match rate (FMR) measures the proportion of
face comparisons between di�erent identities, or non-mated face pairs, that re-
sult in a match. The false non-match rate (FNMR) measures the proportion of
face comparisons of the same identity, or mated face pairs, that do not result
in a match. FMR and FNMR are speci�c to a given discrimination threshold
τ , which is almost universally set so that FMR << FNMR. In this paper, we
discuss the notion of face recognition fairness with respect to the false match
and false non-match rates.

2.2 Fairness in Face Recognition

The fairness of software applications in general has garnered much attention
in recent years from organizations across a wide swath of disciplines, including
computer science, sociology, policy, and others [3, 5, 9, 17, 34]. This focus on algo-
rithmic fairness has been spurred by cases of disparate outcomes for members of
di�erent demographic groups in AI-driven software applications. However, until
recently there has been relatively little activity on measuring the fairness of face
recognition software speci�cally. One particular challenge in the face recognition
domain is that there are numerous ways in which a system can fail, each with
di�erent impacts to di�erent users. In the law enforcement use case in particular,
a false positive identi�cation has the resulting harm of possible false arrest and
imprisonment for a member of the community. A false negative identi�cation,
whereby a known suspect in a database is missed, carries the harm of a suspect
continuing to be at large in a given community. The favourable outcome in po-
lice use of face recognition is therefore a combination of the probability of two
distinct error cases, weighted by some social cost of each error case. The fair out-
come is that this favourable outcome occurs equally often across demographic
groups.

In the absence of other domain speci�c guidance on fairness, scientists from
NIST and the Swiss Idiap Research Institute have proposed two independent
measures of fairness with respect to di�erential error rates. These two methods
are known as the Inequity Rate and Fairness Discrepancy Rate, respectively and
are discussed in detail in the following sections.

3 Methods

3.1 Fairness Discrepancy Rate

Fairness Discrepancy Rate (FDR) was proposed by scientists at the Idiap Re-
search Institute, a Swiss arti�cial intelligence laboratory, in November of 2020 [26].
It was subsequently published in a leading IEEE biometrics journal in August,
2021 [25] as the �.. �rst �gure of merit in this �eld� and highlights that it �con-
sider[s] the FMR and FNMR trade-o� in the demographic di�erential assess-
ment..�. Essentially, this metric advocates for calculating the max di�erence in
false match rate (FMR) and false non-match rate (FNMR) performance between
any two demographic groups di and dj and a given discrimination threshold τ .
Those di�erences are then weighed by parameters α and β = 1−α, which repre-
sent the level of concern applied to di�erences in FMR and FNMR respectively.
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The resulting FDR metric is on a scale of 0 to 1, with 1 being �fair� and 0 being
�unfair� [26]. The exact equations for calculating FDR are shown in Equations 3.

A(τ) = max(|FMRdi(τ)− FMRdj (τ)|) ∀di, dj ∈ D (1)

B(τ) = max(|FNMRdi(τ)− FNMRdj (τ)|) ∀di, dj ∈ D (2)

FDR(τ) = 1− (αA(τ) + (1− α)B(τ)) (3)

3.2 Inequity Rate

The Inequity Rate (IR) was proposed by scientists at NIST in March of 2021 [13].
Unlike FDR, the IR metric takes ratio di�erences between min, max FMR and
FNMR rates per demographic groups di and dj . It then raises these di�erences
to weighing factors α and (1−α) and multiplies the results as shown in Equation
6.

A(τ) =
maxdi FMRdi(τ)

mindj FMRdj (τ)
∀di, dj ∈ D (4)

B(τ) =
maxdi FNMRdi(τ)

mindj FNMRdj (τ)
∀di, dj ∈ D (5)

IR = A(τ)αB(τ)1−α (6)

3.3 Data

Evaluating the properties of summative measures of face recognition fairness re-
quires data. In the case of the FDR and the IR, the data required must have false
match, and non-match rates across demographic groups at a single threshold.
We note this is a non-trivial dataset to develop. Most users and developers of
face recognition only have access to a small number of algorithms. There are also
a limited number of large datasets with ground truth demographic data. The
only source (to our knowledge) of this data in a single, consolidated report is the
NIST Face Recognition Vendor Test (FRVT) Part 3. The FRVT evaluation is
open to face recognition companies and researchers from around the world. Ap-
plicants submit their face recognition algorithm packaged in a NIST de�ned API.
NIST then runs these algorithms over several large corpora of face images where
the identity of the individuals in the photo is known (VISA photos, MUGSHOT
photos, WILD photos, etc.). From these face comparisons, various metrics are
produced such as false match and non-match rates at various thresholds.

Part 3 of the FRVT report was released in 2019 and speci�cally focused
on demographic e�ects [14]. Speci�cally, Annex 15 of this report contains de-
mographically disaggregated error rates for eight demographic groups, across
126 face recognition algorithms. The demographic groups included in the report
consist of two gender groups (Male and Female) paired with four race groups
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Table 1. Data criteria for summative face recognition fairness metric evaluation

Criteria Description

C.1 False match rates

C.2 False non-match rates

C.3 Criteria C.1 and C.2 at a single threshold
per algorithm

C.4 Criteria C.1 and C.2 dis-aggregated
by demographic group

C.5 Criteria C.1 - C.4 across a representative
number of face recognition algorithms

(American Indian, Asian, Black, and White), resulting in eight gender-race pairs.
The discrimination threshold τ used to calculate error rates in Annex 15 was set
to the value that produced a false match rate of 1e−4. The face pairs used to gen-
erate these metrics are derived from a subset of a dataset known as "Mugshots",
which contains images of individuals involved in routine U.S. law enforcement
booking procedures. Demographic labels are assigned by law enforcement o�-
cers and encoded in a record known as the Electronic Biometric Transmission
Speci�cation, or EBTS.

For this work, the values contained in NIST FRVT Part 3, Annex 15 were
hand transcribed into a machine readable comma separated value �le (CSV).
This CSV contains 126 columns (one per algorithm) and 17 rows (algorithm
name, 8 false match rates, 8 false non-match rates, one per demographic group).
We believe this is currently the largest, machine readable collection of disaggre-
gated face recognition error rates. We have made this dataset available at our
organizations GitHub page for the bene�t of the ML fairness community (see
Acknowledgements Section).

3.4 Functional Fairness Measure Criteria

One primary objective of any proposed fairness measure is to rank classi�cation
algorithms by that measure and select the top or �most fair�. We argue this
objective is aided when the fairness measure has three properties that make the
measure intuitive and more easily reasoned about. These properties are listed
below. We collectively refer to these three conditions as the Functional Fairness
Measure Criteria, or FFMC.

� FFMC.1 - The net contributions of FMR and FNMR di�erentials to the
overall fairness measure should be intuitive when using a normal range of
risk parameter weights and operationally relevant error rates.

� FFMC.2 - There should be recognizable points of reference in the domain of
the fairness measure. The easiest way to achieve this objective is to have a
bounded fairness measure, with a minimum and maximum possible value.
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� FFMC.3 - The fairness measure should be calculable when no errors are
observed for a demographic group. Particularly in the context of face recog-
nition, as an increasing number of intersectional demographic groups are
considered, the likelihood of experiencing a group with a FNMR of zero also
increases. Furthermore, in face recognition if cross group FMR numbers are
considered, the likelihood of experiencing a group pair with FMR of zero also
rises. The fairness measure should be able to be computed in the presence
of either one of these conditions.

3.5 The Gini Aggregation Rate for Biometric Equitability

Sections 4.1 and 4.2 examine the properties of the FDR and IR metrics using
real, disaggregated face recognition error rates against the FFMC criteria. We
�nd each metric does not fully satisfy the criteria. We thus propose a third fair-
ness aggregation, called the Gini Aggregation Rate for Biometric Equitability
(GARBE), inspired by the mathematics of the Gini coe�cient. The Gini coe�-
cient is a long-standing measure of statistical dispersion of a set of numbers [11]
that is often applied to measure wealth disparity [8]. The formula for the generic
Gini coe�cient, given n observations of a discrete variable x is shown in Equa-
tion 7. For our purposes, we use a variant that normalizes the upper bound of the
sample by n

n−1 . This corrects for downward bias in Gini coe�cient calculations
when the number of samples is small, as demonstrated in [7].

Gx =

(
n

n− 1

)(∑n
i=1

∑n
j=1 | xi − xj |
2n2x̄

)
∀di, dj ∈ D (7)

Given this de�nition, a simple extension of the Gini coe�cient to the face
recognition, or general biometric, use case, taking account risk parameters for
weighting the impact of a false match versus false non-match error is shown in
Equation 9. We coin the term Gini Aggregation Rate for Biometric Equitability
(GARBE) to describe this measure.

A(τ) = GFMRτ ; B(τ) = GFNMRτ (8)

GARBE(τ) = αA(τ) + (1− α)B(τ) (9)

One potential drawback to the approach proposed by Equations 7 - 9 is that
various studies have documented grouping e�ects in Gini calculations that can
result in underestimation of numeric dispersion [32]. For example, consider calcu-
lating the Gini coe�cient as shown in Equation 7 on error counts as experienced
across three groups, A, B, and C. For the data x = {5, 5, 10}, the corresponding
Gx = 0.25. However, were we to combine the error counts for groups A and B
such that x = {10, 10} the corresponding would Gx would be 0. It therefore
becomes possible to �cheat the system� by grouping the data in such a way that
minimizes the Gini coe�cient, giving an impression of a �more fair� system that
would not exist had data been grouped otherwise. To discourage the intentional
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use of grouping to bias comparisons involving Gini coe�cients, we recommend
the speci�cation of grouping variables and group sizes when reporting calcula-
tions of the Gini coe�cient and derivatives of the metric, such as GARBE.

3.6 The Pareto Curve Optimization with Overall E�ectiveness

As others have noted, fairness is often part of a trade space with another opti-
mization criteria, accuracy [33, 35]. For example, one way to achieve �fairness� in
a face recognition system is to simply declare every face pair as non-matching.
Each demographic group would therefore have precisely equal FNMRs (100%)
and precisely equal FMRs (0%). While fair, this solution is less than desirable
when one also considers the overall performance of the system.

One common technique for optimization around multiple performance cri-
teria in economics and engineering is Pareto e�ciency. One can say a pair of
performance measures for a solution is Pareto e�cient if it satis�es the follow-
ing condition. Given a set of performance measures p1 = {p1,1, p1,2...p1,m} and
p2 = {p2,1, p2,2...p2,m} for m solutions, a pair {p1,n, p2,n} is Pareto e�cient if
both of the following conditions is met:

p1,n < p1,x∀x ∈ {1, ..,m} | x 6= n

p2,n < p2,x∀x ∈ {1, ..,m} | x 6= n
(10)

Similarly, if a pair of performance measures satis�es one condition but not
the other then we can say this pair is weakly Pareto e�cient.

4 Results

4.1 Properties of Fairness Discrepancy Rate in Practice

When we apply the data described in Section 3.3 to the FDR measure (Sec-
tion 3.1) we see the distribution of FDR measures as shown in Figure 1. We
notice that, despite having a theoretical range of 0 to 1, the practical range of
the FDR measure, with the alpha and beta set to 0.5, is closer to 0.9 to 1, with
over 95% of FDR values falling in that range. This is a straightforward mathe-
matical extension of the fact that, while the act of aggregating error rates makes
sense in principle, for the face recognition problem in particular these error rates
almost always exist on vastly di�erent scales. For example, using sample data
from NIST FRVT part 3 we see FNMRs ranging from 1.29% to 6.54%. Con-
versely, the false non-match rates are orders of magnitude smaller, ranging from
0.001% (1e−5) to approximately 0.05% (103.3 = 0.000501). This is generally true
of all face recognition error rates found in our dataset (see Figure 1B, note the
log scale of the y axis). This has the e�ect of limiting the FDR measure, for all
practical purposes, to 1 minus the di�erence in FNMR only, hence the practical
range from 0.9 to 1.0 (FNMR di�erences typically vary by <1% to 10%).

Furthermore, this aggregation of error rates that exist on signi�cantly di�er-
ent scales has the extended e�ect of making the risk parameter α a challenge to
con�gure correctly. Recall from Section 3.1 that alpha is the �weight� of the false
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Fig. 1. Fairness Discrepancy Rate values using NIST FRVT Part 3 face recognition
error rates.A. Overall distribution of FDR values (alpha = 0.5). B Magnitude of the
alpha and beta terms in Equation 3.C.Minimum and maxiumum values for FDR given
an alpha setting. Note the convergence of the range as alpha increases. D. Relative
contribution of the alpha term to the overall FDR value. Note the truncated x scale
(0.7 - 1.0) and that the median contribution of the alpha term does not surpass 50%
until alpha is set to 0.99. Error rates used in FDR calculation are across the eight
demographic groups described in Section 3.3.

match discrepancy in the overall FDR calculation. However, because of the small
magnitude of FMR di�erences, these di�erences only begin to impact the FDR
calculation on an equal scale as FNMR di�erences when alpha is set to greater
than 0.99. Indeed, from Figure 1D we see that the median relative contribution
of the FMR di�erence to the FDR only surpasses 50% when alpha is 0.99 and
higher.

4.2 Properties of Inequity Rate in Practice

Because of the ratio rather than aggregation based summative nature of the
Inequity Rate (IR) metric, the issues discussed in Section 4.1 are largely absent.
The distribution of IR values at the default alpha of 0.5 spans a range from 2.4
to 26.38 with lower values representing is more �fair� algorithms in this metric
system (Figure 2A). The A(τ) and B(τ) terms are on more similar scales, with
A(τ) typically having a value in the 40 - 50 range and the B(τ) term typically
ranging from 4 to 9. This more congruous relationship between the A(τ) and
B(τ) terms means the IR reacts to changes in false match rate weight (α) with
IR distributions continuing to span representative portions of the metric space
at all values of α (Figure 2C) and the A(τ) term having more of an impact as
alpha rises (Figure 2D).
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Fig. 2. Inequity Rate (IR) values using NIST FRVT Part 3 face recognition error rates.
A. Overall distribution of IR values (alpha = 0.5). B Magnitude of the alpha and beta
terms in Equation 6. C. Distribution of IR values given an alpha setting. D. Relative
contribution of the alpha term to the overall IR value. Error rates used in IR calculation
are across the eight demographic groups described in Section 3.3.

The only challenge to interpreting IR values that arises from this analysis
is the unbounded nature of the metric. Because of its multiplicative nature and
the exponential risk weights, there is no theoretical upper bound on the IR
measure. Although the practical upper limit in this study was 63.1, di�erent face
recognition algorithms could, in theory, give IR results that approach in�nity.
Similarly, this ratio property also has the drawback of making IR incalculable
when the min FNMR or FMR for any group is 0.

4.3 Properties of the Gini Aggregation for Biometric Equitability
in Practice

The Gini Aggregation for Biometric Equitability (GARBE) measure combines
the positive characteristics of the FDR and IR measures. Namely, it's a summa-
tive aggregation, meaning the bound can be reasonably controlled but it does
not add or subtract error rate values that, in practice, exist on markedly di�erent
scales. Instead the GARBE calculates the Gini coe�ecient as an approximation
to the �spread� or dispersion of these error rates and leverages the fact that the
resulting coe�cient is already scaled from 0 to 1. This coe�cient can then be
weighed using the same basic, multiplicative weighing technique utilized in the
FDR metric. We see that using a default α of 0.5, GARBE metrics for algo-
rithms in [14] span about half of the theoretically usable range (0.165 - 0.618,
Figure 3A). This range continues to span representative portions of the metric
space as false match error weight (α) is modulated (Figure 3C). We also note
that the A(τ) and B(τ) terms are the only terms in any of the summative fairness



10 Howard and Laird, et al.

measures presented here that are scaled to the same order of magnitude, with
the median A(τ) value found at 0.74 and the median B(τ) at 0.33 (Figure 3B).
Finally, because of the consistent scaling of the Gini coe�cient calculation, the
relative contribution of the A(τ) term to the overall GARBE metric increases
approximately linearly as alpha increases (Figure 2D), with the mean contribu-
tion of A(τ) surpassing the contribution of B(τ) when α = 0.4. Contrast this
with Figure 1D where the mean contribution of A(τ) did not surpass 0.5 until
α = 0.99.

Fig. 3.GARBE values using NIST FRVT Part 3 face recognition error rates.A.Overall
distribution of GARBE values (alpha = 0.5). BMagnitude of the alpha and beta terms
in Equation 9. C. Distribution of GARBE values given an alpha setting. D. Relative
contribution of the alpha term to the overall GARBE value. Error rates used in GARBE
calculation are across the eight demographic groups described in Section 3.3.

4.4 In Summary of Summative Fairness Measures

Because the FDR metric is bounded, we �nd it is possible to create reference
points in its domain. For example, a perfectly fair algorithm (no di�erences in
group based FNMR or FMR) has a FDR of 1 and an perfectly unfair algorithm
(all FNMR or FMR occurring for one group) has a FDR of 0. FDR is also
calculable in the presence of zero percent FNMR or FMR. However, the FDR
measure's di�erential terms exist at vastly di�erent scales when using a normal
range of risk parameters and operationally relevant error rates (Figure 1B). In
face recognition deployments where false match rate di�erences across group are
of concern, the FDR alpha term should be set on the scale from (0.99, 1] in
order to allow the contributions from the A(τ) term to contribute to the overall
FDR measure. This is not documented anywhere outside this audit but is an
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important point should the FDR measure be used to select fair face recognition
algorithms in practice.

The IR fairness measure largely recti�es the scaling issues encountered with
FDR measure by taking a ratio as opposed to minmax aggregation of FMR and
FNMR numbers. This results in the IR measure having a dynamic range that
spans from a supposed minimum of 1 (�fair� algorithm) to a practical maximum
of 63.1, in this study. Furthermore, the contribution from A(τ) and B(τ) are
on relatively similar scales when alpha values are set to normal ranges. How-
ever, also because of this ratio aggregation, the IR measure can approach ∞ as
mindj FNMRdj (τ) or mindj FMRdj (τ) approaches 0 and is indeed incalculable
should one of these rates reach 0. Its also challenging to interpret and compare IR
values both within and across studies. Because of the unbounded nature of the
measure, the most direct approach to establishing a �fair� algorithm is to parti-
tion the IR space and select algorithms in the Nth quartile. However, this quartile
can shift from study to study, depending on the minimum FNMR and FMR's
per group encountered. This makes comparing IR values a challenge should the
IR measure be used to select fair face recognition algorithm in practice.

Finally, the GARBE fairness measure, proposed in this study, builds on the
strength of the FDR and IR measures. Instead of aggregating minmax FNMR
and FMR di�erences, the GARBE measure weighs and aggregates measures of
dispersion of these error rates, namely the Gini coe�cient (Equation 7). This has
several advantages. One, this measure is calculable in the presence of error rates
being 0. Second, this measure �rst converts two sets of numbers that exist on
markedly di�erent scales to a single common metric space before weighing and
aggregating. In this fashion we can both avoid the poor relationship between risk
ratios and relative contribution of A(τ) and B(τ) terms (Figure 1C-D and 3C-D)
and retain a bounded domain (Figure 2A &C and 3A & C). Because of these
properties, the GARBE measure is able to satisfy all the FFMC criteria. Table 2
summarizes the three fairness measures with respect to the FFMC criteria.

Table 2. Summary of Summative Fairness Measures

FFMC Criteria FDR IR GARBE

FFMC.1 X X
FFMC.2 X X
FFMC.3 X X

4.5 Pareto Curve Optimization with the Gini Aggregation Rate for
Biometric Equitability

Finally, this study advocates for evaluating face recognition algorithms along
multiple axes of performance, namely overall e�ectiveness and fairness, using
the Pareto curve method (Section 3.6). This technique requires computing both
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overall e�ectiveness and a fairness measure. We select the GARBE fairness mea-
sure for the reasons outlined in Section 4.4. As a measure of overall performance
we select total FNMR across all demographic groups. This value is a weighted av-
erage of the error rates as reported in Annex 15 (Section 3.3) and the mated com-
parison counts, also provided in the introductory material to Annex 15 of [14].

This result is shown in Figure 4, with overall performance (FNMR) plotted
on the x axis and the GARBE fairness measure plotted on the y axis. Each point
represents an algorithm, while the Pareto e�cient algorithms are connected with
a red line and have their names printed. We note the Pareto frontier provides a
perceptive means of down-selecting which algorithms should be considered in this
optimization space. Any algorithm not on the Pareto frontier can be discarded,
as there exists another selection that is either mathematically more fair or better
performing. This e�ectively reduces the search space for the �optimal� algorithm
from the 126 algorithms tested in [14] to the 9 on the Pareto frontier, a savings of
over 90%. Additionally, if we further re�ne our search to algorithms that had very
good performance overall, we only have to consider the six algorithms in the inset
of Figure 4. Algorithm didiglobalface-001 is the highest performing in this space,
having achieved the lowest overall FNMR of ∼0.0022. However, it is also the least
fair of the Pareto e�cient set, having achieved the highest GARBE measure
of ∼0.54. Conversely, algorithm intellifusion-001 was the least performative of
this set, with a total FNMR of ∼0.0038, but it also had a somewhat improved
GARBE fairness measure at ∼0.37. Whether this trade-o� of a 0.0016 increase
in total performance is worth a decline in fairness of 0.17 is a question that can
be posed to system designers. However, the Pareto curve, frontier, and process
we have outlined here allow this trade-space to be explored e�ectively.

5 Discussion

In this study we have executed the �rst audit of two proposed face recognition
fairness measures using demographically disaggregated false match and false
non-match error rates from 126 commercial and open source algorithms. We've
found that both proposed models have bene�ts and drawbacks when it comes to
interpreting their outcomes on face recognition error rates commonly found in
practice. We've attempted to consolidate the bene�ts of each approach into a set
of interpretability criteria, called the FFMC, and hope these can serve as a guide
for future development of fairness measures, particularly in the face recognition
domain. We've also proposed an alternative fairness measure, the Gini Aggre-
gation Rate for Biometric Equality or GARBE that satis�es all of these criteria
and demonstrated a protocol using Pareto e�ciency that can rapidly identify
optimal algorithms in both the overall performance and fairness domains. The
main takeaways and areas of future work are delineated below.

5.1 Audit the Audit

As discussed in Section 2.2, there are currently a plethora of de�nitions for
both bias sources and fairness measures propagating throughout the ML fairness
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Fig. 4. Pareto curve of Gini Aggregation Rate for Biometric Equitability (GARBE)
values plotted against overall performance (Total FNMR) using NIST FRVT Part 3
face recognition error rates. Red line connects algorithms that are Pareto e�cient. No
algorithms are weakly Pareto e�cient. Inset shows zoom1ed area where total FNMR
performance is less than 1%

space. This increased attention is a positive development. However, in such an
environment, it is critical to evaluate the merits of di�erent approaches when
applying a given technique to a speci�c use case. Often times, when analysing
the positive outcome in a speci�c application of a ML decision system, there is
not one speci�c failure case that can cause harm but a set, which requires the
aggregation of di�erent error probabilities into a new metric, as we have shown
here. As new metrics are developed and proposed, purveyors and evaluators of
ML algorithms should strive to ensure the statistical properties of their proposed
methods are well documented via the kind of audit we have performed here. In
this way they can be of maximum utility to the broader ML fairness community.

5.2 On the Need for Additional Fairness Data

One obvious yet often illusive requirement for auditing fairness measures in any
domain is data. This study documented a set of criteria necessary for the evalua-
tion of face recognition fairness measures in particular (Table 1). Access to data
of this nature is a necessary for auditing fairness measures, yet datasets of this
nature are limited at best. We have attempted to provide one such dataset by
open sourcing the error rates used in this research. However, even this dataset
has certain drawbacks. For example, our dataset only shows error rates at a sin-
gle population-wide FMR threshold. FNMR and FMR measures across a range
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of representative thresholds would allow for a more complete investigation. Ad-
ditionally, our dataset only includes intra-demographic false match error rates
(Male-to-Male and Female-to-Female, for example). However, equatability in the
face recognition domain may depend on inter -demographic false match rates
(Male-to-Female, etc.) [15]. To promote future work in this area, evaluators of
face recognition algorithms should consider making more robust datasets avail-
able to the community in a readily parsable format.

5.3 Limitations of Mathematical Formulations of Fairness

Finally, we conclude with a discussion of the general term �fairness� in relation to
the kind of mathematical audits we have performed here. As others have noted,
fairness is a broad concept without a concise de�nition [1, 30]. Additionally, as
observed by individuals, fairness is not primarily a mathematical construct but a
social and perceptual one [18, 19]. We've used the term �fairness measure� as have
others in the sense that these metrics relate to the topic of fairness, as they are
used to reason about di�erential error rates. However, one area that is currently
under-researched in the ML fairness community is how mathematical notions of
fairness translate to perceptual notions of fairness. Human perception is often
nonlinear and we have accounted for these non-linearities in measurements of
physical intensity (e.g. light and sound [28]) and in economic models [20]. Fur-
thermore, if a system has precisely equal odds that a privileged and unprivileged
group will receive a positive outcome in a given fairness space (e.g. a disparate
impact of 1), does a human observing this system operate perceive it to be fair?
There very well may be entire classes of AI systems, face recognition included,
that regardless of their performance may be perceived as unfair in some applica-
tions. Should this be the case, then, despite current consensus in the literature,
the term �fairness� may not be appropriate for describing the class of metrics that
deal more narrowly with di�erential performance of the system rather than the
perceptual fairness of a particular application of the system. We think studies
to understand human perception of fairness will help bridge current gaps be-
tween notions of mathematical fairness based on accuracy and social/perceptual
fairness in the ML fairness community.
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