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Executive Summary 

This study was sponsored by the U.S. Department of Homeland Security (DHS) and 
conducted at the Maryland Test Facility (MdTF) as part of ongoing evaluations of 
biometric performance across demographics groups.  Using data gathered at the 
MdTF, we extend the demographic analysis previously published following the 2018 
Biometric Technology Rally.  The 2018 study analyzed data from 11 acquisition 
systems and one matching algorithm to draw conclusions regarding the impact of race, 
skin lightness, gender, and other demographic variables on biometric performance.  

BACKGROUND: 

MOTIVATION: Analyses conducted following the 2018 Rally were meant to explain the demographic 
effects on rank one mated similarity scores.  Since, they have been widely cited as 
evidence of demographic differentials in face recognition technology more broadly.  
However, the 2018 study included a relatively limited sample of face recognition 
systems (11 acquisition and one matching system).  It remained unclear if those results 
were generalizable to face recognition as a technology.  Here, we examine 158 
combinations of acquisition systems and matching algorithms with the goal of 
extending the 2018 Rally analysis and gaining a better understanding of demographic 
effects on mated similarity scores using a significantly larger set of biometric system 
combinations.  The presence of demographic effects in mated similarity scores may 
or may not cause increased error rates in these systems, depending on system 
configuration. 

WHAT WE 
FOUND: 

We find the conclusions from the 2018 Rally remain consistent in most system 
combinations tested since.  We show that both self-reported demographic variables, 
as well as measured skin lightness, affect rank one mated similarity scores across a 
wide variety of system combinations.  The majority of system combinations tested 
showed a statistically significant effect related to eyewear, gender, and skin lightness 
on rank one mated similarity scores.  When modeled using regression techniques, 
mated similarity scores averaged across acquisition system were lower for people 
wearing eyewear on 96% of models.  For 74% of  models, women tended to have 
lower mated similarity scores when matched to a gallery of historic images.  This 
gender effect disappears when matching the same probe images to a gallery of face 
images taken on the same day.  For 57% of  models, those with darker skin had lower 
mated similarity scores.  We further show that, for models where skin lightness is 
found to be significant, skin lightness is a better predictor of average mated similarity 
scores than self-reported race.   



THE DHS S&T TECHNICAL PAPER SERIES, AUGUST 2023 2

Demographic Effects Across 158 Facial
Recognition Systems

Cynthia M. Cook, John J. Howard, Yevgeniy B. Sirotin, Jerry L. Tipton, and Arun R. Vemury

• C. Cook, J. Howard, Y. Sirotin, and J. Tipton staff the Identity and Data
Sciences Laboratory at the Maryland Test Facility.

• A. Vemury works at the United States Department of Homeland Security,
Science and Technology Directorate in Washington, DC.

• Authors listed alphabetically. E-mail correspondence should be sent to
info@mdtf.org

✦

1 INTRODUCTION

B IOMETRIC face recognition systems have gained
widespread adoption in a variety of use-cases, includ-

ing in the U.S. Department of Homeland Security (DHS) [1],
[2]. As part of its efforts to identify technologies that per-
form well in such DHS use-cases, the DHS Science and Tech-
nology Directorate (DHS S&T) sponsors biometric research
and scenario testing at the Maryland Test Facility (MdTF).

In 2018, DHS S&T carried out the first Biometric Tech-
nology Rally: a large scale scenario test designed to measure
the performance of commercial biometric technology within
a simulated, high-throughput, unattended border control
process. A particular focus of this test was to ascertain
if the performance of tested commercial face recognition
systems varied for people belonging to different demo-
graphic groups [3]. DHS S&T found that demographic fac-
tors influenced the similarity score output of all tested face
recognition systems. More specifically, modeling showed
that mated similarity scores were higher for men versus
women, for older versus younger people, for those with-
out eyewear, and those with relatively lighter skin. Of the
different demographic factors examined, measures of skin
lightness had the greatest net effect on average biometric
performance [4]. Since 2018, DHS S&T has continued to
carry out yearly Biometric Technology Rallies. This technical
paper extends the original analysis to the 2019, 2020, and
2021 Biometric Technology Rallies [5], finding that the rank
one mated similarity scores returned by face recognition
systems continue to be influenced by eyewear, gender, and
skin lightness.

2 BACKGROUND

Biometric recognition systems are made up of multiple
components. At a minimum, a biometric recognition system
consists of a biometric data subject whose identity is to
be ascertained or confirmed (“subject”), a sensor which
captures samples (“probe” images) of subject’s biometric
characteristics (“acquisition system”), and an algorithm that

processes and compares information across different bio-
metric samples to compute a similarity score (“matching
system”). Biometric identification systems specifically also
utilize a database of biometric samples with known iden-
tities (“gallery”). Biometric scenario testing, as defined by
ISO/IEC 19795-2 [6], is the process by which multiple sys-
tem components are combined to measure the performance
of simulated full systems. Each component can indepen-
dently alter the performance of the full biometric system.
This report uses statistical modeling to examine the de-
mographic performance across biometric face recognition
systems, which are composed of a commercial acquisition
and matching system.

The first published analysis of demographic effects
in biometric facial acquisition systems was based on
the 2018 DHS S&T Biometric Technology Rally [4] and
has been widely cited as evidence of demographic dif-
ferentials or “bias” in face recognition technology more
broadly [7] [8] [9] [10] [11] [12] [13] [14] [15]. However, [4]
tested just one face recognition algorithm in combination
with eleven acquisition systems. Since 2018, three additional
Rallies have been conducted at the MdTF. Each test was
conducted in the same facility with the objective to measure
the effectiveness of commercial face recognition technology
in an unstaffed, high-throughput scenario. Each Rally tested
a subset of the acquisition systems and matching algorithms
available on the market in that year and each recruited a
new subset of test volunteers from the local area to serve as
subjects. Each test was designed to follow the same process,
with the exception of introduction of masking and social
distancing in the 2020 and 2021 Rallies (this manuscript
examines the performance of face recognition systems iden-
tifying subjects asked to remove their face masks prior to
image acquisition). Table 1 shows, for each Rally, the num-
ber of participating volunteers, face acquisition systems,
face matching systems, and the resulting number of system
combinations tested.

This technical paper analyzes performance for a total
of 158 system combinations tested from 2019 through 2021
with a cumulative sample of 1,590 volunteers, with 949
unique individuals (Table 1). Some systems that were tested
as part of each Rally were not included in this report. For
example, this report focuses on visible light face recognition
and one acquisition system was not included in analysis
because it acquired samples in the near infra-red wave-
length range. A total of five matching systems were also

mailto://info@mdtf.org
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excluded from analysis because they were judged to be non-
representative of state-of-industry systems, due to persistent
technical issues encountered during testing. Finally, 23 vol-
unteers (cumulative) were excluded from analysis in this
report because they had missing data, declined to provide
requisite demographic information, or did not participate in
measurement of skin tone.

Rally Acquisition
Systems

Matching
Systems

System
Combinations

Volunteers

Tested (Analyzed)
2018 11 1 11 363
2019 11 (10) 8 (7) 88 (70) 430 (428)
2020 6 (6) 10 (8) 60 (48) 582 (570)
2021 5 (5) 10 (8) 50 (40) 601 (592)
Total (19-21) 22 (21) 28 (23) 198 (158) 1613 (1590)

TABLE 1
Counts of the acquisition systems, matching systems, system

combinations, and volunteers participating in the 2018-2020 Biometric
Technology Rallies (Tested) and those examined in this report

(Analyzed; see text for details).

Using data from the analyzed system combinations and
volunteers, this technical paper replicates and extends the
analyses performed in 2018 (described in Section 3). Section
3 provides the methods employed in data acquisition and
analysis. Section 4 presents the overall results these analyses
and Section 5 discusses the significance of the results.

3 METHODS

3.1 Process and Data

Each Biometric Technology Rally was carried out at the
MdTF in Upper Marlboro, MD. The test process and evalu-
ation for each of the four Rallies were designed to provide
a systematic, repeatable framework for evaluating the effec-
tiveness of biometric systems. Briefly, acquisition systems
providers were given a three month period to design and
implement a biometric system capable of capturing samples
from subjects as they interacted with the system. Acquisi-
tion systems were required to be both “high-throughput,”
defined as having transaction times under five seconds, and
highly effective, defined as true identification rates above
99%. Both in-gallery and out-of-gallery (i.e. “distractor”)
subjects interacted with acquisition systems. Although not
discussed here, true identification rate in the original Rally
concept was the combination of: 1) correct identifiers for in-
gallery subjects returned at rank-one above threshold and 2)
no identifier returned at any rank above threshold for out-
of-gallery subjects. Acquisition systems were also required
to operate in a confined 6x8 foot space and be entirely
unstaffed.

All test volunteers consented to participate in the study
under an established Institutional Review Board (IRB) pro-
tocol, and most had volunteered for past test activities at the
MdTF. Race, age, gender, eyewear, height, and weight were
self-reported during study enrollment. Race options pro-
vided volunteers included the five U.S. Census categories
from 2017 [16] and “Other”. For analysis, the categories
American Indian or Alaskan Native, Native Hawaiian or
Other Pacific Islander, and Asian are combined with the
Other category to create three categories: “White” (W),

“Black or African-American” (B), and “Other Race” (O).
Subjects were selected such that each test contained a de-
mographically diverse group in terms of gender, race, and
age (Figure 1).

Fig. 1. Demographic factor distributions for volunteers included in each
Rally test: 2019 (Pink with Strips); 2020 (Green with Crosses); 2021
(Blue with Dots). A. Counts of volunteer self-reported gender: Female
(F); Male (M). B. Counts of volunteer self-reported use of eyewear: No
(N); Yes (Y). C. Counts of volunteers self-reported race: Black or African-
American (B); White (W); “Other Race” (O). D. Distribution of volunteer
age. E. Distribution of volunteer height. F. Distribution of volunteer face
skin lightness (L*).

For the 2019 - 2021 Rallies, skin lightness was elec-
tronically quantified using a calibrated dermatological color
device (cyberDERM, DSM III Colormeter [17]). This sensor
measures skin color in the CIELAB color space by using
an RGB sensor to image a 7 mm2 patch of skin under
standard illumination provided by two white light emitting
diodes. The device can accurately measure the color as well
as erythema and melanin indices for skin [18] [19]. Skin
lightness measures were collected by an attendant, using
this device, from each hand and each temple. Additional
details are available in [20]. The L* component of CIELAB
was used as the measure of skin lightness during analysis.
This use of skin lightness values from an in person der-
matological sensor is an important distinction of this work,
as skin lightness has been shown to be unreliable when
assessed from images [21] [22] [23]. Figure 2 shows example
enrollment images and the corresponding L* values for a
select number of subjects in this study.

3.1.1 Face Image Galleries

The gallery is an important part of a face recognition sys-
tem. This analysis examined the performance of biometric
systems with two galleries: “same-day” and “historic”.

The images in the “same-day” gallery were collected
from the volunteers at the start of each test session. This
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gallery was designed to house high-quality reference sam-
ples taken on the same day as the probe samples acquired
by the tested acquisition systems. Subjects were enrolled
into the “same-day” gallery by staff trained in biometric
collection. Subjects stood in front of a 18% neutral gray
background with diffuse illumination (600 − 650 lux). En-
rollment staff collected a single face image using a Logitech
C920 camera at a 1 meter standoff (resolution: 1920x1080).
Staff asked volunteers to remove any hats or glasses and as-
sume a neutral expression. Staff assessed any image quality
issues and re-acquired images when necessary. This resulted
in a “same-day” face image gallery of 430, 582, and 601 face
samples from the 2019, 2020, and 2021 Rallies, respectively.

Fig. 2. Enrollment image for select subjects and their measured skin
lightness value (L*).

The “historic” face image gallery consisted of biometric
samples acquired from prior test events, dating between
2014 and at least one month prior to each Rally test in
question. These samples were acquired using a variety of
cameras including digital single lens reflex (DSLR) cameras,
web-cameras, and cameras embedded in biometric systems.
This gallery was designed to be broadly representative of
identification galleries used during airline boarding and
contained images of varying quality. Table 2 describes each
Rally’s “historic” gallery, which consisted of a number of
samples or gallery images from 500 unique people where
some people are Rally test volunteers and others are “dis-
tractors” or out-of-gallery subjects for the Rally.

Rally Gallery
Images

Gallery
Participants

Samples per
Participant

Test
Volunteers

Distractors

2019 1958 500 3.92 430 78
2020 1479 500 2.96 582 93
2021 1925 500 3.85 601 113

TABLE 2
Description of each Rally “historic” gallery.

3.1.2 Rank One Mated Similarity Scores
For each Rally test, probe face images acquired by each
acquisition system were compared, using each matching
system, against both the same-day and historic galleries
producing a set of similarity scores. The set of similarity
scores against the same-day gallery used samples from all
430, 582, 601 test volunteers, while the corresponding set
for the historic gallery used only samples from the 352,
489, 488 test volunteers who had corresponding images
in the historic gallery (in-gallery subjects). Every Rally
r ∈ {2019, 2020, 2021} had different acquisition systems a,
matching systems m, and volunteers s which were matched
to each gallery g ∈ {historic, same-day}. Since all probe
subjects were in-gallery, the rank one mated similarity score

Φg,m
a,s is defined as the maximum score obtained for the

probe image against a gallery. Probe images for which the
rank one similarity score was higher than the mated simi-
larity score were removed from this analysis. This was done
because some systems occasionally had technical issues,
such as sending a probe photo late, or to aquiring images for
individuals in the background. This subsequently caused a
ground-truth labeling error (i.e. the ground-truth identifier
of the probe image was incorrect). Such instances occurred
in less than 1% of collected data. Matching system providers
did not have the opportunity to normalize galleries g across
template space or otherwise “finalize” individual galleries.
Thus each “identification operation” in this sense can be
viewed as a set of sorted 1:1 comparisons. This is represen-
tative of how some, if not the majority, of biometric systems
perform identification [24].

3.2 Statistical Modeling
Statistical modeling was performed to explain the varia-
tion in Φg,m

a,s of each system combination and volunteer
demographics. Modeling was performed for each system
combination in each Rally. Given 158 system combinations
(see Table 1) and two separate identification galleries (g),
there were 316 rank one similarity score distributions to
model: 158 system combinations evaluated against the his-
toric gallery (“historic” system combinations) and 158 sys-
tem combinations evaluated against the same-day gallery
(“same-day” system combinations). These final modeled
system combinations included 23 unique matching systems
and 21 unique acquisition systems, though not in full com-
bination (e.g. 21×23 ̸= 158, see Table 1). Statistical modeling
results are presented below.

3.2.1 System Combination Models
We used linear regression models to explain the variation
in rank one mated similarity scores produced by differ-
ent system combinations across volunteers based on vol-
unteer demographics [4]. Modeling was performed using
the R statistical programming language. For the rank one
mated similarity scores produced by each system combi-
nation Φg,m

a,s , we constructed a “full” linear model using
nine demographic covariates according to Equation 1. We
included three categorical variables: gender, eyewear, and
race as well as three continuous variables: age, height,
and skin lightness. We normalized the continuous variables
age, height, and skin lightness prior to fitting according to
z = (x − µx)/σx. For each continuous variable, we also
included their squared transformations, as deviation from
the mean could produce a significant effect (i.e. very short
or very tall subjects can see changes in score due to pitch
angle to the camera) . The inclusion of interaction terms,
which could lead to over-fitting, was not considered in this
analysis.

Φ = Φg,m
a,s = β0,a + β1,agenders + β2,aeyewears+

β3,araces + β4,aages + β5,aage
2
s + β6,aheights+

β7,aheight
2
s + β8,alightnesss + β9,alightness

2
s + ϵa,s

(1)

We estimated model parameters β, using ordinary least
squares (OLS) fitting. We then found the “optimal” sys-
tem combination model by down-selecting demographic
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covariates to minimize the Akaike Information Criteria,
AIC = 2k − 2ln(L̂), where k represents the number of
estimated parameters in the model and L̂ represents the
maximum value of the model’s fitted likelihood. AIC mea-
sures the goodness of fit of the model while discouraging
over-fitting with a penalty for increasing the number of
model parameters k. To find the optimal models, we first
fit the full model with all nine demographic covariates.
We then applied a step wise covariate selection procedure
in both directions using the stepAIC() function in the R
package MASS. We applied this procedure to select optimal
historic system combination models and, separately, select
optimal same-day system combination models. Equation 2
describes the optimal system combination model with k− 1
covariates selected, for the sth volunteer and ath acquisition
system. There was one optimal average model for each
unique system combination for a total of 158 historic and
158 same-day models.

x = xg,m
a,s = [x1,s, x2,s, ...xk−1,s]

β = βg,m
a = [β1, β2, ..., βk−1]

Φ = Φg,m
a,s = β0,a + βT x + ϵa,s

(2)

3.2.2 Monte Carlo Parameter Selection

We performed Monte Carlo Simulations to estimate the
likelihood of selecting a random covariate by chance in our
optimal models as described in Section 3.2.1. For each sys-
tem combination model and each of the nine covariates, we
ran 1,000 simulations. Each simulation started by creating
a new randomized covariate by re-sampling from the origi-
nal covariate distribution, with replacement. This sampling
removes any link between the demographic covariate and
the response variable Φg,m

a,s while preserving other statistical
properties. We then replaced the true covariate with the
randomized covariate, re-fit the model, and applied step-
wise regression to minimize AIC. We then calculated the
proportion of simulations in which the randomized covari-
ate was selected in the optimal model. We find that for all
simulations, the likelihood of selecting a random covariate
by chance is approximately 16%. Given our degrees of
freedom and number of observations, this is in line with
expectations when identifying noise variables [25].

3.2.3 Average Models

We used linear regression models to examine the relation-
ship between volunteer demographics and average rank one
mated similarity scores returned by each matching system
across all acquisition systems included in each Rally test.
For each volunteer s, we first averaged the rank one mated
similarity scores across each acquisition system according to
Φ̄g,m

s = 1
Nr a Φ

g,m
a,s where Nr ∈ {10, 6, 5} is the number

of acquisition systems analyzed in each Rally r (Table 1), m
is the matching system and g corresponds to the reference
gallery (either historic or same-day). We then created a full
“average” linear model for Φ̄g,m

s using the same nine demo-
graphic covariates as described in Section 3.2.1 according to
Equation 3.

Φ̄ = Φ̄g,m
s = β0 + β1genders + β2eyewears+

β3races + β4ages + β5age2s + β6heights + β7height2s+

β8lightnesss + β9lightness
2
s + ϵs

(3)

Next, we estimated model parameters β using the same
procedure as in Section 3.2.1. Equation 4 describes a final
“optimal average” model with k − 1 covariates selected.
There was one optimal average model for each unique
matching system for a total of 158 historic and 158 same-
day models.

x̄ = x̄g,m
s = [x̄1,s, x̄2,s, ..., x̄k−1,s]

β = βg,m = [β1, β2, ...βk−1]

Φ̄ = Φ̄g,m
s = β0 + βT x̄+ ϵs

(4)

3.2.4 Bootstrapping for Estimated Confidence Intervals
We assessed the accuracy of model fits through residual
analysis. For the majority of both the system combination
and the average models, we found the residuals deviated
from normality, with noticeable deviations present in the
QQ plots of our response variables {Φ, Φ̄} (data not shown),
likely due to the presence of outliers. We therefore obtained
confidence intervals for model parameter estimates using a
bootstrapping technique instead of relying on the standard
error for each average optimal model. We generated 3,000
bootstrap samples and calculated the bias corrected boot-
strapped confidence intervals or the BCα, by sampling from
the rank one scores, for each of the fitted coefficients in the
optimal models [26]. Covariates with 95% BCα confidence
intervals that contain 0 were removed from the optimal
system combination and optimal average models.

3.2.5 Cross-Validation of Optimal Model Parameters
Our model selection approach showed that some covariates
did not improve model fit sufficiently as judged using AIC
and via examination of bootstrapped confidence intervals.
These covariates are therefore excluded from the optimal
models (Equation 3). To independently confirm the opti-
mal selection of covariates included in our optimal model,
we used the non-parametric technique of cross-validation.
Specifically, of interest for further examination was the
inclusion of either race or skin lightness. For all models,
we specify a base model (B), which includes all optimal
terms except for any race or lightness terms. We then
consider three models built from the base model, namely
the base model including race (B+R), the base model in-
cluding lightness (B+L), and the base model including both
lightness terms (B+L+L2). For each model, we performed
ten-fold cross-validation and compared the cross-validated
R2 of the base model to all other models. Since the exact
fold compositions, and therefore the cross-validated R2,
values are dependent on a random seed, this procedure
was executed with 100 randomly drawn starting seeds to
compute the mean and 95% confidence intervals for the
cross-validated R2 values. Comparing the cross validated
model with the highest R2 to the optimal model, we can
confirm the inclusion of the race and lightness terms in the
optimally fit model.
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3.2.6 Mixture Models for Cross System Effects

The average models explain the effects of demographic
covariates on average mated similarity scores (Section 3.2.3).
We examined whether rank one mated similarity scores
for samples acquired on different acquisition systems were
associated with distinct demographic covariate effects in
combination with a given matching system. This analysis
was possible because each volunteer in each Rally interacted
with each of the acquisition systems.

To model these effects, we applied linear mixture mod-
eling with system ar as the random effect. To start, we used
all demographic covariates retained in the optimal model
from Equation 4 as fixed effects. This approach allowed
us to model our response variable by estimating both the
variance across all systems (fixed effects: β0 and βT ) and
the variance between different systems (random effect: β0,a

and βT
a ) as described in Equation 5 where y is the set of

k selected system-specific slope covariates and βa are the
corresponding parameters.

y = ys = [x1,s, x2,s, ...xk,s]

βa = [β1,a, β2,a, ...βk,a]

Θa,s = β0 + βT x + β0,a + βT
a y + ϵa,s

(5)

Starting with only the fixed effects model, we added an
acquisition system-specific slope β0,a. If this reduced AIC,
it signified that there are statistical performance differences
between systems. Then, given the intercept model that in-
cludes β0,a, we used a forward model selection approach to
identify the mixed individual effects that continue to mini-
mize AIC, adding each demographic covariate (y) one at a
time. A reduction in AIC for a given demographic covariate
signifies the inclusion of a system-specific coefficient for this
variable improves model fitness and thus, there are notable
performance differences between acquisition systems for this
demographic factor. We performed this procedure for the
historic gallery similarity scores. Since the goal of this anal-
ysis was to estimate the acquisition system-specific effects,
we estimated all model parameters β, by maximizing the
restricted likelihood (REML) [27].

4 RESULTS

4.1 Demographic Effects Observed in Optimal Historic
System Combination Models

We first examined the effects of volunteer demographics
on each system combination selected for modeling (Sec-
tion 3.2). We used linear modeling (Section 3.2.1) to de-
termine whether a relationship between each demographic
covariate and rank one mated similarity score was present
and to estimate the direction (positive or negative) of each
relationship. We do not report the size of the relationship
between a demographic covariate and score because each
matching system produces scores that scale along different
units.

We first modeled similarity scores for 158 historic system
combination models using rank one mated scores against
a historic gallery of samples gathered during prior test
events (Section 3.1.1). Starting with a full model including

nine demographic covariates (Equation 3), we used an AIC-
based model selection approach to find the optimal model
including only those demographic covariates that improved
model fit while minimizing the number of model param-
eters. Following model selection, we computed the 95%
bootstrapped, bias corrected confidence intervals (BCα), for
each parameter and removed those covariates for which the
confidence interval of the parameter estimate included 0.

Fig. 3. A. Percentage of optimal historic system combination models
(n = 158) retaining each listed demographic covariate. Vertical dashed
line represents percentage of optimal models expected to retain the
covariate by chance (Section 3.2.2). B. Percentage of optimal historic
system combination models that retain each covariate with a positive
(Red) versus a negative (Blue) relationship determined as the sign of
the lower bound of the parameter estimate.

Figure 3A plots the percentage of the 158 optimal historic
system combination models retaining each demographic
covariate. It shows that eyewear, gender, and lightness were
the only demographic covariates retained in the majority of
models; 67%, 58%, 51%, respectively. Recall that each covari-
ate has a 16% probability of appearing in an optimal model
by chance (see Section 3.2.2). Interestingly, race and age were
retained in just 11% and 18% of the models, respectively;
approximately chance levels. This analysis shows that eye-
wear, skin lightness, and gender are reliable covariates of
rank one mated similarity scores across this sample of face
recognition systems and test population whereas age and
race are not. Height was selected in 33% of the models,
better than chance, suggesting that some face recognition
systems were also affected by volunteer height. A nonlinear
effect of age2 was selected in 20% of the models, better
than expected by chance, suggesting that similarity scores
were lower for individuals that were older or younger than
average (average age = 44.79 years).

Figure 3B plots the direction of the relationship be-
tween each demographic covariate and similarity score.
This analysis shows that all models retaining gender had
a positive relationship with similarity score such that rank
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one mated similarity scores were higher for volunteers who
self-identified as male. Further, 99% of models that retained
lightness and eyewear had a positive relationship between
score and lightness, i.e., for volunteers reporting having no
eyewear and for volunteers with lighter skin, scores were
higher. On the other hand, when included, height had a
negative relationship with score such that scores were lower
for taller individuals in these system combinations. Similar
to [4], this is likely due to larger face pitch angles associated
with taller subjects. In a finding that diverges from [4],
the same effect was not present for shorter individuals
as evidenced by the low percentage of models where the
height2 was retained (13%, Figure 3). This perhaps indicates
progress in the acquisition industry in capturing shorter
subjects and subjects in wheel-chairs.

4.2 Demographic Effects Observed in Optimal Historic
Average Models

The demographic effects observed for each combination of
acquisition and matching systems are influenced by the in-
teraction between the biometric samples supplied by a par-
ticular acquisition system and the way they are processed by
a particular matching system. The notion of the “quality” of
a biometric sample generally refers to the degree to which
that sample can contribute to robust matching performance.
We wanted to examine the relationship between subject
demographics and the performance of matching systems
more generally, independent of the quality of a specific
probe sample returned by a given acquisition system.

Following [4], we modeled the relationship between vol-
unteer demographics and the average rank one mated sim-
ilarity score across all acquisition systems for that volunteer
(Section 3.2.3). This effectively averages out any variation
due to quality differences across samples while retaining
demographic effects shared across acquisition systems. We
did this for the 158 historic system combinations to generate
23 historic average models, one for each matching system
(see Table 1). We then used our model selection process to
find optimal historic average models.

Figure 4 plots the percentage of the 23 optimal historic
average models retaining each demographic covariate and
the sign of the relationship. The pattern of results generally
mimicked those observed for models of individual system
combinations (Section 4.1). As for individual models, eye-
wear, lightness, gender, and height were retained more often
than expected by chance whereas race was not. Interestingly,
more optimal historic average models retained a nonlinear
effect of lightness2 than expected by chance, suggesting
that similarity scores were lower for individuals that were
darker or lighter than average; as well as retaining a more
than expected number of models with a linear effect of age,
suggesting that similarity scores were lower for individuals
who were older.

This meta-analysis shows that face matching systems
tested in 2019, 2020, and 2021 show the same gender,
eyewear, and lightness effects as the one matching system
tested in 2018 [4]. Figure 5 visualizes the demographic co-
variates retained in the 23 optimal historic average models
as well as those retained in the matching system tested in
2018 [4] as reference.

Fig. 4. A. Percentage of optimal historic average models (n = 23)
retaining each listed demographic covariate. Vertical dashed line repre-
sents the percentage of optimal models expected to retain the covariate
by chance (Section 3.2.2). B. Percentage of optimal historic average
models that retain each covariate with a positive (Red) versus a negative
(Blue) relationship determined as the sign of the lower bound of the
parameter estimate.

Fig. 5. Demographic covariates retained in each optimal historic average
model analyzed (M1-M23). The first row depicts results for optimal
historic average model examined in the 2018 Rally. Dark blue: Co-
variates included in the optimal average models. Light blue filled with
dots: Covariates removed from the optimal model because the 95%
(BCα) boot strapped confidence intervals of their parameter estimate
overlapped 0.

4.3 Self-reported Race and Skin Lightness

One surprising finding of [4] is that skin lightness (“re-
flectance” in the original work) was a better explanatory
covariate of rank one mated similarity scores than self-
reported racial categories (see Section 3.1). We further exam-
ined the relationship between skin lightness, race, and face
recognition performance using data from the 2019, 2020, and
the 2021 Rallies.

Figure 6 plots the normalized distributions of skin light-
ness values for volunteers self-identifying as different race
categories. The figure shows that lightness was not only
correlated with race such that lightness for volunteers iden-
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tifying as Black or African-American was lower than light-
ness for volunteers identifying as White (µB = 42.0, µO =
52.4, µW = 56.8 on average across Rallies), but also that
the distribution of measured lightness for volunteers iden-
tifying as Black was broader (σB = 6.40, σO = 5.18, σW =
3.16) on average across Rallies.

Here we found that this finding continued to hold for
this broader sample of biometric systems. Only 12% of
optimal historic system combination models (Figure 4A)
and 13% of optimal historic average models retained race
(Figure 5A). On the other hand, 54% of the optimal historic
models and 57% of the optimal historic average models
retained lightness.

Fig. 6. Distributions of lightness values measured using a calibrated
instrument. Colors and patterns correspond to self-reported race: Black
or African-American (B), White (W), and Other (O). Facets correspond
to distributions observed in each Rally test.

Using the present dataset, we replicated the original
finding that lightness is a better explanatory covariate of
face recog nition scores compared with race. For the set of
23 optimal average models, we independently confirmed
whether race or lightness best explains face recognition
scores. For each optimal model, we first created a baseline
model (B) by removing any lightness or race covariates and
computing adjusted R2 for this model. We next computed
adjusted R2 values for models where we systematically
added race (B+R), lightness (B+L), lightness2 (B+L2), or
both lightness terms (B+L+L2) using cross-validation (Sec-
tion 3.2.5). We then selected the model permutation (B, B+R,
B+L, or B+L+L2) that maximized adjusted R2.

Figure 7 shows the percentage of historic average models
for which race, lightness, lightness2, or both lightness and
lightness2 optimized the model in terms of adjusted R2.
This independent model selection approach shows that for
77% of the models the fit was optimized with the addition
of a lightness covariate whereas race optimized the fit for
only 9% of the models. This analysis confirmed that skin

lightness, not race, best explains rank one mated similarity
scores across a wide sample of face recognition systems.

Fig. 7. Proportion of historic average models (n = 23) for which ad-
justed R2 was maximized by Lightness (made up of Lightness in pink,
Lightness2 in olive and “Both” Lightness and Lightness2 in green), Race
in blue, or None in purple (adjusted R2 was maximized without the
inclusion of Race or Lightness).

Further, we examined whether skin lightness could ex-
plain score variation in average historic models when sep-
arately considering volunteers within each race category
(e.g., if similarity scores for volunteers identifying as Black
were higher if their skin was lighter as compared with Black
volunteers with darker skin). We did not examine effects
of lightness this way for volunteers that self-identified as
“Other Race” due to a limited sample size.

For each Rally, we subsetted our data to include a cohort
of volunteers from only one self-identified race group (Black
or African-American or White). We then performed linear
modeling as before (Section 3.2.3) to select optimal models
that best explain rank one mated similarity scores observed
separately for each cohort.

Figure 8 shows the percentage of optimal historic aver-
age models that included each demographic covariate (A)
and the direction of its relationship with scores (B) for fits to
each cohort. We observed several differences between opti-
mal models fit to each race cohort. For the cohort of Black
volunteers, results generally followed findings for modeling
the full population: lightness, gender, eyewear, height, age,
age2, and lightness2 were included in a percentage of models
substantially above levels expected by chance. For the White
volunteer cohort, however, there were differences relative
to full population. For this cohort, only eyewear, age, and
height were retained at levels above chance whereas light-
ness and gender were generally not retained.

There are two reasons why lightness was not retained
in most models for volunteers self-identifying as White.
First, the distribution of lightness values observed for this
cohort is relatively narrow. Second, lightness effects may be
disproportionally more present for darker skin tones below
L∗ = 50. Notwithstanding, this analysis shows that face
recognition scores were influenced by volunteer lightness
for 70% of the examined matching systems, even when
considering only the cohort of volunteers self-identifying as
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Black or African-American, which have a broadest range of
measured skin lightness values (Figure 6).

Fig. 8. Optimal historic average models fit to separate volunteer cohorts
by race. A. Percentage of optimal historic average models retaining
each listed demographic covariate. Top: models fit using the Black or
African-American volunteer cohort. Bottom: models fit using the White
volunteer cohort. B. Percentage of optimal historic average models that
retain each covariate with a positive (Red) versus a negative (Blue) re-
lationship. Top: models fit using the Black or African-American volunteer
cohort. Bottom: models fit using the White volunteer cohort. Note that
race was not included as a covariate since all modeled volunteers in
each cohort were of the same race.

4.4 Same Day vs. Different Day Gallery Effects

Earlier analysis of the 2018 Rally showed that rank one
mated similarity scores can be lower for females relative
to males when matching probe samples against reference
samples collected on a different day, but not when matching
the same probe samples against reference samples collected
on the same day [4], suggesting that gender effects in face
recognition may be mediated by changes in self-styling and
personal appearance over time.

Fig. 9. Demographic covariates retained in each optimal same-day
average model analyzed (M1-M23). The first row depicts results for
optimal historic average model examined in the 2018 Rally. Dark blue:
Covariates included in the optimal average models. Light blue filled with
dots: Covariates removed from the optimal model because the 95%
(BCα) boot strapped confidence intervals of their parameter estimate
overlapped 0.

To examine whether this finding holds for a broader
sample of face recognition systems, we repeated our anal-
ysis of average models, but examined similarity scores
against a same-day gallery (Section 3.1.1) to generate 23
optimal same-day average models. Figure 9 visualizes the
demographic covariates retained in each optimal same-
day models examine here as well as covariates retained in
the earlier analysis of the 2018 Rally as reference. Results
presented for optimal historic average models in Figure 5
shows that just five same-day models retained gender as
compared with seventeen of the historic models, replicating
prior results. Additionally, more optimal same-day average
models retained age and lightness2, but fewer retained the
linear effect of lightness.

Fig. 10. Average mated similarity scores (Scores) variation with light-
ness and gender faceted by gallery. Lighter circles (Female) and lighter
triangles (Male) show average mated similarity scores for individual
volunteers. Darker circles (Female) and darker triangles (Male) denote
grand average of scores across volunteers binned by lightness quartile.
Lines indicate optimal fits to gender and lightness, fixing other factors
constant at the average value of the subject population in each facet.
Note y-axis is truncated for readability.

Figure 10 shows the variation in average rank one mated
similarity score with lightness and gender for an example
matching system, M9. Figure 10 shows a positive effect
of lightness with both male and female lines having a
positive slope for both same-day and historic models. The
gender effect is present in the historic model, i.e. higher
scores for males relative to females, but not in the same-day
model. This study did not control for self-styling conditions
(i.e. hair and make-up). However, this finding is generally
supported by other studies that did [28] [29].

4.5 Demographic Effects Across Acquisitions Systems
To examine if demographic effects observed for a given
matching system varied across acquisition systems (i.e., if
the covariate had a greater or lesser effect for samples from
some acquisition systems relative to others), we modeled
historic gallery scores returned by each analyzed matching
system across multiple acquisition systems using mixed
effects modeling (Section 3.2.6). For this analysis, we consid-
ered every matching system because all 23 had optimal his-
toric average models that included at least one demographic
covariate (see Figure 5). We therefore generated 23 mixed ef-
fects models which started with the optimal historic average
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model (fixed effects) and then included random intercepts
for each acquisition system and random slopes for each
demographic covariate in a stepwise procedure (minimizing
AIC) to identify the optimal model that explains similarity
score variation across volunteers and acquisition systems.
For this analysis, we only considered random effects for
demographic covariates retained in each optimal historic
average model.

Following this procedure, we confirmed that the new
mixed effects models retained the original fixed effect coef-
ficients from each starting optimal historic average model,
indicating consistency in modeling and confirming that the
average models are not unduly affected by any acquisition
system specific outliers. All 23 models were improved as
assessed by the AIC values with the inclusion of a random
intercept.

Table 3 tallies the number of models for which the fit
was improved with the addition of specific mixed effect
terms. Six of the models were not improved by the ad-
dition of mixed effect terms (mixed effect: none) meaning
no difference in demographic covariate effects across ac-
quisition systems. Eight of the 23 models were improved
by adding a mixed effect of lightness, indicating that the
degree to which lightness influenced similarity scores varied
depending on acquisition system for those eight matching
systems. Interestingly, six of the 23 models included a ran-
dom effect of eyewear, suggesting that effects of eyewear
may vary depending on acquisition system used (e.g. if an
acquisition system asks subjects to remove their glasses).
Rally vendors could install signage requesting volunteers
to remove glasses while interacting with their acquisition
system. Any signage was unique to each system and was
not controlled during the test.

Mixed Effect Count
None 6 of 23
Lightness 8 of 23
Gender 7 of 23
Eyewear 6 of 23
Height 3 of 23

TABLE 3
Count of the optimal historic mixed-effects models (n = 23) that include

specific demographic mixed effects. Note that each model could
contain more than one demographic effect.

5 DISCUSSION

This study examined whether demographic factors reli-
ably explained face recognition performance across a large
sample of commercial face recognition systems (21 acqui-
sition systems, 23 matching algorithms, 158 acquisition-
matching system combinations) tested across a three year
period from 2019 to 2021 as part of the DHS S&T Bio-
metric Technology Rallies. The analyzed sample of the 158
acquisition-matching system combinations indicated some
demographic factors influence the accuracy of the majority
of system combinations. For example, in 81 of 158 system
combinations (51%), optimal historic models relating rank
one mated score to demographics retained a skin lightness

term. In 99% of these models, scores were higher for those
with lighter skin (Figure 3). This effect also persisted when
created a matching system specific model by averaging
across acquisition system, in 13 of 23 optimal models (57%,
Figure 4). Gender also impacted the majority of system
combination models (92 of 158 or 58%) and average system
models (17 of 23; 74%). In 100% of these models, rank one
mated scores were higher for males.

However, the relationship between gender, skin light-
ness, and biometric performance was notably different in
one regard. Unlike skin tone effects, gender effects were
notably reduced or eliminated when matching between two
images gathered on the same day (Section 4.4). This suggests
self-styling elections may be contributing to these gender
effects, an outcome which is consistent with prior work [29].
Hence, reducing the relationship between self-styling deci-
sions and mated match score may be a viable avenue to
reduce gender effects in commercial face recognition.

By far the most ubiquitous demographic effect detected
in this study is that of eyewear, with higher rank one
mated similarity scores for individuals without eyewear.
Eyewear effects were detected in 67% of the 158 tested
system combinations and from all but one of the 23 tested
matching algorithms when scores were averages across
acquisition system (Figures 3 and 4, respectively). This
effect is somewhat expected, as glasses create a distractor
in an image, which could lower mated similarity scores on
average due to occlusions and distortions of face features
around the eyes. For this reason, subject enrollment into the
Rally requires subjects remove their eyeglasses, as do many
other applications, such as passports.

Next, this study builds on work showing that lightness is
a better predictor than race. While skin lightness is only one
of many phenotypic measures that can be quantified from
the human face, it appears to be a salient one as it relates to
automated face recognition performance. In our matching
system models, 77% of the models kept an effect of lightness
and only 9% kept an effect of race (Figure 7). Similar
effects were shown in [4]. However, here we also show that
individuals identifying as Black or African-American have a
larger variation in skin lightness as compared to individuals
that self-identify as White (Figure 6). Critically, skin light-
ness only influenced rank one mated scores at levels above
chance when considering volunteers identifying as Black or
African-American but not those who identified as White
(Figure 8). This suggests that mated scores are reduced
specifically for those individuals with skin lightness below
a certain value and not necessarily based on race categories.
This is further evidence that race labels are problematic
when discussing the causality of face recognition perfor-
mance variation. Improving imaging for darker skin tones,
so that the quality of images is comparable across the full
color gamut of human skin tone, is a viable avenue to reduce
skin tone effects in commercial face recognition

Finally, we close with two notes. First, at a high level, this
study largely replicates our prior study in 2018, which tested
one matching algorithm averaged across eleven acquisition
systems using a historic gallery [4]. However, unlike the
effects of eyewear, gender, and skin lightness, the effect of
age was not found reliably in the present analysis. This
difference may be due to the different biometric systems
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tested in this report. Indeed, recent work suggests that
modern face recognition algorithms have become better
able to maintain matching performance for individuals with
varying ages [30].

Second, this study examined demographic differentials
in rank one mated similarity scores. Whether any of the
observed score differentials manifest in actual biometric false
non-match error rates would depend on the thresholds used
in deployed systems. The presence of score differentials and
their direction suggests that error rate differentials may be
observed in some applications of the technology but not
others [31]. It is therefore important to test for demographic
differentials in biometric error rates in specific applications
of face recognition technology. We hope these findings can
assist the developers and procurers of face recognition tech-
nologies improving face recognition system performance
across demographic groups.
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