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Abstract

The growing adoption of biometric identity systems,
notably face recognition, has raised questions regard-
ing whether performance is equitable across demographic
groups. Prior work on this issue showed that performance
of face recognition systems varies with demographic vari-
ables. However, biometric systems make two distinct types
of matching errors, which lead to different outcomes for
users depending on the technology use case. In this re-
search, we develop a framework for classifying biometric
performance differentials that separately considers the ef-
fect of false positive and false negative outcomes, and show
that oft-cited evidence regarding biometric equitability has
focused on primarily on false-negatives. We then correlate
demographic variables with false-positive outcomes in a di-
verse population using a commercial face recognition al-
gorithm, and show that false match rate (FMR) at a fixed
threshold increases >400-fold for broadly homogeneous
groups (individuals of the same age, same gender, and same
race) relative to heterogeneous groups. This was driven by
systematic shifts in the tails of the imposter distribution im-
pelled primarily by homogeneity in race and gender. For
specific demographic groups, we observed the highest false
match rate for older males that self-identified as White and
the lowest for older males that self-identified as Black or
African American. The magnitude of FMR differentials be-
tween specific homogeneous groups (<3-fold) was modest
in comparison with the FMR increase associated with broad
demographic homogeneity. These results demonstrate the
false positive outcomes of face recognition systems are not
simply linked to single demographic factors, and that a
careful consideration of interactions between multiple fac-
tors is needed when considering the equitability of these
systems.
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1. Introduction

Machine learning algorithms are increasingly being used
in ways that affects people’s lives. Consequently, it is im-
portant that these systems are not only accurate when exe-
cuting their given task but equitable, i.e. have fair outcomes
for all people. Face recognition technology leverages ma-
chine learning algorithms to compute the similarity score
between photos of people’s faces. This similarity score can
be used to find the identity associated with a photo based on
its similarity to a gallery of photos with known identities.
This process is called identification. Face similarity scores
can also be used to verify identity claims by measuring the
similarity of a new photo with a photo associated with a
claimed identity. This process is called verification. Algo-
rithm performance in these tasks depends critically on the
difference between distributions of scores generated when
comparing photos that belong to the same person (mated
scores) versus scores generated when comparing photos of
different people (non-mated scores). Match and no-match
decisions made by comparing this score to a set threshold
can result in impactful identity decisions.

Prior to the advent of machine vision, face recogni-
tion tasks were solely performed by people using dedicated
neural networks for face processing [8]. However, since
the 1960s [!] computers have steadily increased their face
recognition performance such that artificial neural networks
have recently surpassed human performance on some diffi-
cult recognition tasks [18]. Automation of face recogni-
tion has spurred its burgeoning use in both commercial and
government applications. With increasing use of the tech-
nology it is important to consider whether it performs equi-
tably. Indeed, there is significant public interest in this issue
with the popularity of the search term “facial recognition
bias” increasing steadily in the United States since 2013,
and clearly skewing higher than historical averages in 2017,
2018, and in projections for 2019 (Figure 1). There has also
been an associated increase in the number of popular news
articles reporting on the topic of bias in face recognition
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Figure 1. Aggregate relative popularity of the search term “facial
recognition bias” in the United States according to Google Trends
(as of March 2019) overlaid on planning, collection, execution,
and analysis time frames for our study.

systems since 2016 [24, 16, 6, 25,2, 23, 12].

Despite this rising public awareness and media attention,
the term “bias” as it applies to biometric systems is not well
defined. The term bias itself is vastly overloaded with, of-
ten different connotations in statistics, computer science,
psychology, and historical public discourse. In machine
learning specifically, the sources of bias can vary, from the
historical processes used to generate data, to the selection
criteria used to collect data, to the evaluation criteria used
to optimize a particular model [22]. These distinctions are
critically important when discussing how to address bias in
biometric systems.

Our group has been studying demographic factors in bio-
metric performance since 2010 and, since 2011, has been
planning and collecting data in order to report on how these
factors affect the performance of facial recognition systems
(Figure 1). The initial results of this effort were published
in [4] . Here we extend this work and propose a language
and quantitative framework for measuring the equitability
of biometric identity systems. We base this framework on
the concept of differential performance across demograph-
ics, and show how these may lead to separate differential
outcomes for mated and non-mated face comparisons (Sec-
tion 2.2). Using this framework, we show that prior studies
of biometric equitability, including our own, have focused
largely on mated or genuine score distributions, and how
these lead to false rejections. We then proceed to use our
framework to measure how differences in similarity scores
for non-mated or imposter comparisons across demograph-
ics lead to false matches using a commercial face recogni-
tion algorithm.

2. Background and Methodology
2.1. Biometric Error Rates and Their Causes

Biometric samples are inherently noisy. They come from
biological systems that are subject to physiological, be-
havioral, and environmental changes. Biometric recogni-
tion systems are tasked with evaluating the correlations be-
tween pairs of biometric samples, and establishing if they
are “similar enough” to be declared from the same biomet-
ric source. This operation necessarily involves a decision
or discrimination threshold that defines the degree of simi-
larity required to declare a pair of samples as matching or
non-matching. A false non-match (FNM) error occurs when
a mated pair of biometric samples is found to exhibit simi-
larity that is less than a given system’s decision threshold.

Biometric samples also inevitably share some common
patterns. They come from biological systems that share a
certain degree of genetic and random similarity. A false
match (FM) error occurs when a non-mated pair of bio-
metric samples is found to exhibit similarity that is greater
than a given system’s decision threshold. The rates at
which FNM and FM errors occur are dictated by the de-
gree to which the genuine and imposter distributions over-
lap and the location of the decision threshold (Figure 2).
Importantly, the relative position of both genuine and im-
poster distributions can be different when considering com-
parisons between individuals belonging to different demo-
graphic groups.
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Figure 2. The relationship between genuine distributions, imposter
distributions, decision threshold, false non-match rate (FNMR)
and false match rate (FMR) in biometric systems. Figure modi-
fied from [14].

2.2. Biometric Equitability Framework

The equitability of a biometric system must be consid-
ered in the context of specific biometric task being per-
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formed. To facilitate discussion, we introduce the following
set of terms:

* Differential Performance. We define differential per-
formance as a difference in the genuine or imposter
distributions between specific demographic groups in-
dependent of any decision threshold. This is closely
related to the concept of “biometric menagerie”, a
phenomena in which subject-specific genuine and im-
poster distributions are statistically different [5, 20,

, 21]. Differential performance is this same effect,
not for specific subjects, but for specific demographic
groups.

* Differential Outcome. We define differential out-
come as a difference in FM or FNM rates between
different demographic groups relative to a decision
threshold. Similarity scores in and of themselves are
not the outcome of an identity decision. They must be
be re-cast to match/no-match decisions using a deci-
sion threshold. These match decisions can then can be
used to calculate FM and FNM error rates.

» False Negative Differential. We define the term False
Negative Differential to mean a greater or lesser ten-
dency for one demographic group to experience a false
negative error relative to another group. That is, a ten-
dency of the group member to fail to be identified as
themselves.

« False Positive Differential. We define the term False
Positive Differential to mean a greater or lesser ten-
dency for one demographic group to experience a false
positive error relative to another group. That is, a ten-
dency to mistake the group member for somebody else.

The concepts of False Negative and False Positive Dif-
ferentials helps frame the effect a biometric system can have
on individuals when performing a specific task. For exam-
ple, in a law enforcement scenario, the False Negative Dif-
ferential Outcome is that a bad actor is not identified, and
therefore incorrectly not investigated. The False Positive
Differential Outcome is that an innocent is mistaken for a
bad actor and, therefore incorrectly stopped or investigated.
In both examples, these differentials are undesirable but the
outcomes themselves are very different.

2.3. Equitability Framework and Prior Work

Uniformly, the media articles referenced in Section 1 cite
a 2016 Georgetown study, “The Perpetual Lineup” which
states as one of its main findings that “Face Recognition
Algorithms Exhibit Racial Bias” [9]. This report, in turn,
cites the academic study [15], which states that “Several
leading algorithms performed worse on African Americans,
women, and young adults than on Caucasians”. However,

this study looked at false non-match rate (FNMR) at a spe-
cific false match rate (FMR) and decision threshold to find
“lower matching accuracies on the same cohorts (females,
Blacks and age group 18 to 30)”. This is an example of
False Negative Differential Outcome. As pointed out in
the Perpetual Lineup report, in a law-enforcement context,
this finding means that African Americans present in a law-
enforcement gallery are actually less likely to be identi-
fied compared to Caucasian individuals present in the same
gallery. This study [15] does not show that African Ameri-
cans are more likely to be mistaken for others.

Our group as well has previously investigated the ef-
fect of demographic factors on biometric performance of
eleven commercial biometric systems [4] . Among other
effects, we found that mated match scores for people with
lower skin reflectance tended to be lower than mated match
scores for people with higher skin reflectance. This is an-
other clear example of False Negative Differential Perfor-
mance, which may or may not manifest as False Negative
Differential Outcome depending on the camera technology
utilized. Our study also suggests that individuals in a law-
enforcement gallery that have lower skin reflectance are less
likely to be identified using face recognition than individu-
als with higher skin reflectance present in the same gallery.
Our study does not show that individuals in a with lower
skin reflectance are more likely to be mistaken for others.

However, False Positive Differential Performance and
Outcome are legitimate issues, and must be examined sep-
arately. Facial structure, skin tone, and anatomical features
are all genetic traits, meaning they are more likely to be
shared by those that share genomic background, such as
those with a similar ancestry. Recently, large scale tests
of face recognition algorithms have supported this notion
showing higher FMR for individuals from specific coun-
tries [11]. If some demographic groups are notably more
likely than others to be erroneously matched during a facial
recognition gallery searches (False Positive Differential) it
would raise reasonable concerns regarding the use of that
technology.

Finally, we note there is a large existing body of work re-
garding disparate impact, discrimination analysis, and fair-
ness [20, 7]. While most of these methods were not de-
veloped specifically for facial recognition applications, they
can still be applied in some cases. A full review of the vari-
ous methods and the issues associated with their use is out-
side the scope of this research. However, one specific def-
inition of fairness, known as the “four-fifths” rule has been
advocated by the United States Equal Employment Oppor-
tunity Commission (EEOC) [3]. This rule, typically applied
to certify selection rates in hiring are non-discriminatory,
states that rates across all groupings should be within 80%,
or four-fifths, of the highest group rate. For example, if fe-
male applicants are hired at a rate of 20%, male applicants
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should be hired at a rate no less than 16% and vice-versa.
We will reference this specific definition of fairness in our
investigation of False Positive Differential Outcomes.

2.4. Test Design

We examined False Positive Differential Performance
and Outcome using face biometric samples collected dur-
ing the 2018 U.S. Department of Homeland Security, Sci-
ence and Technology Directorate (DHS S&T) Biometric
Technology Rally . The methods for data collection have
been published elsewhere [13] [4] . Briefly, face images
were collected from 363 test subjects, diverse in age, gen-
der, and race within a controlled environment. For the pur-
poses of this study, we limited our sample to subjects who
self-reported as White (W), Black or African American (B),
male (M), and female (F) (Figure 3). Face images were
identified against a historic gallery of face samples using
a leading commercial face recognition algorithm tested in
[11]. Here we examine the non-mated biometric compar-
isons performed as part of these identifications, together
with the self-reported subject demographics to measure im-
poster distributions and false positive rates.
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Figure 3. Distributions of the demographic variables self-reported
by test subjects. A. Distribution of subject gender: (F) female; (M)
male. B. Counts of subjects identifying with each racial category:
(B) Black or African American; (W) White; C. Distribution of test
subject ages.

2.5. Subject-Specific 99th Percentile Non-Mated
Score as a Measure of Differential Perfor-
mance

Figure 2 shows that biometric error rates are driven by
the behavior of the tails of the genuine and imposter distri-
butions. Consequently, in this research, we quantify shifts
in the 99th percentile score of the imposter distribution.
We measure the 99th percentile non-mated score separately

for each individual in our dataset for reference galleries
composed of individuals with homogeneous or heteroge-
neous demographics. For age, subjects who were within
+10 years of each other were considered homogeneous or
“same” and vice versa. Gender and race similarity was de-
fined according to the categories in Figure 3. In Equation
1, Sgg.m is the subject-specific 99th percentile non-mated
score, Z(,,)(m) is the ordered set of non-mated similarity
scores for subject m, and n = [.99 * |Z|].

S99.m = L(n)(m) (L

2.6. Conditional Probability as a Measure of Differ-
ential Outcome

Conditional probability is a parsimonious technique to
measure differential outcome. It is the measure of the prob-
ability of some event A given some condition B, denoted
P(A | B). Using this method, [15] showed that:

P(FNM |G €F) > P
P(FNM |R€B)> P
P(FNM | A €[18,30] > P
P(FNM | A € [18,30] > P

FNM | G € M)
FNM |R € W)
FNM | A € [30,50])
FNM | A € [50,70])

—~ =~ = =<

where G is gender, which has a value of male (M) or
female (F), R is race, which has a value of Black or African
American (B) or White (W) and A is age, which has a range
of 18 to 30, 30 to 50, or 50 to 70.

This study will use the methods discussed in Sections
2.5 and 2.6 to explore False Positive Differentials across
both broad homogeneous groups (same race, same gen-
der, same age) and demographically specific homogeneous
groups (white, males, older, etc.). When approaching the
latter, the possible number of demographic combinations
multiplies rapidly and the chosen subsetting order can mask
datapoints. For example, we never calculate the FMR of all
females compared to all males if we first subset our popu-
lation by race. Therefore, to intelligently select this order-
ing, we use the concept of Shannon Entropy to quantify the
amount of information gained about FMR by knowing the
demographic labels of race, gender, and age. Information
gain is the change in entropy from a prior state E(T) to a
state where some information is known E(T | X). It is
defined in Equations 2 & 3, where p; is the probability of
being in state ¢ € {false match, true no-match}.

IG(T,X) = E(T) — B(T | X) )

E(T) = - Z = p;log,(p:) 3)

This technique also produces the exact FMR for each
specific demographic subgroup, allowing us to quantify the
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False Positive Differential Outcome of the face recognition
algorithm on different demographic subgroups.

3. Results

3.1. The Effect of Broad Demographic Homogeneity
on Face Recognition

Prior work has shown that comparisons of faces belong-
ing to similar demographic groups produce higher similar-
ity scores than faces that belong to different demographic
groups [11][10]. We examined how the imposter distri-
bution generated by our algorithm varied when compar-
ing demographically heterogeneous (different race, gender,
and age) versus demographically homogeneous individu-
als (same race, gender, and age; see 2.5). Figure 4 shows
that Sgg ,, increases steadily with increasing homogene-
ity. Indeed, we see a nearly twofold increase in the av-
erage Sog,,, from 0.193 when comparing demographically
heterogeneous individuals to 0.373 when comparing demo-
graphically homogeneous individuals.
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Figure 4. Distributions of the 99th percentile subject-specific non-
mated scores across broad homogeneous versus heterogeneous
race, gender, and age categories.

The movement in the tails of the imposter distributions
observed in Figure 4 for the more homogeneous groups will
result in greater FMR at some decision thresholds. This is
reflected in Table 1, which shows the FMR at a hypothetical
threshold of 0.41 as a function of broad demographic homo-
geneity. From Table | we ascertain that demographically
homogeneous individuals in our study are 428 times more
likely to match each other than demographically heteroge-
neous individuals. Table | shows that some demographic

variables have a larger effect on FMR. Taking the FMR for
demographically heterogeneous individuals as baseline, we
see that limiting comparisons to those of the same age re-
sults in a 1.3-fold increase in FMR, limited to those of the
same gender results in a 9-fold increase in FMR, and limited
to those of the same self-reported race results in a 25-fold
greater FMR. These homogeneity effects are not strictly lin-
ear. For example, taking the age, gender, and race multipli-
ers of 1.3, 9 and 25, we would naively expect FMR for in-
dividuals sharing these traits to be 1.3 % 9 * 25 = 292.5-fold
greater for heterogeneous individuals, under-estimating the
true FMR by nearly a third.

Table 1. False match rate at a threshold of 0.41 across homoge-
neous versus heterogeneous race, gender and age categories.

Race Gender Age FMR | Multiplier
Different | Different | Different | 1.7e-5 1
Different | Different Same 2.3e-5 1.3
Different Same Different | 1.6e-4 9
Different Same Same 3.3e-4 19

Same Different | Different | 4.3e-4 25

Same Different Same 8.3e4 49

Same Same Different | 2.8e-3 162

Same Same Same 7.3e-3 428

3.2. The Effect of Specific Demographic Homogene-
ity on Face Recognition

Figure 4 and Table 1 show that broad demographic ho-
mogeneity alters the imposter distribution so as to increase
FMR, with the largest FMR increases for individuals of sim-
ilar race, followed by gender, and finally age. We next ex-
amine whether these effects are different for specific demo-
graphic groups within our sample (i.e. False Positive Dif-
ferentials) using the information gain metric, discussed in
Section 2.6. The specific demographic groups we consider
are individuals who self-identified their race (R) as either
White (W), or Black or African American (B), individuals
who self-identified their gender (G) as male (M) or female
(F), and individuals who have an age difference of less than
10 years and were older than 40 (Old or O) or who have an
age difference of less than 10 years and were younger than
40 (Young or Y).

Comparing all probe images to all non-mated historic
gallery images (see Section 2.4) produced a set of ~ 7.2
million non-mated comparisons between 52,020 non-mated
subject pairs. 10,253 of these comparisons, from 1690 non-
mated subject pairs produce a similarity score of greater
than 0.41, yielding a FMR at this threshold for the entire
population of 1.4e~3. This FMR (between 1 in a 1000 and
1 in 500) is reasonable for an operational system with a low
imposter incidence rate (such as office access control). Per
Equation 3, the entropy of this full set is 1.6e~2.
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To determine which covariate (race, gender, or age) pro-
vided the most information about false match rate, we cal-
culated the information gain by splitting the full set of com-
parisons by each covariate in turn (see 2.6). Figure 5 shows
that information gain for race is greater than the information
gain for any of the other covariates.

False Match False Match
Yes No Yes No
old 679 615,677 5 | Male 3.585 1,701,106
2 [ Youms 1107 1606434 | | E | Female 53527 1,860,166
Different 5404 4.926,780 = | Different 1,141 3,587,619
Gain =1.7e Gain =7.4e+
False Match
Yes No

| White 2,582 1,075,662

5 Black 7271 2659314

Different 400 3413925

Gain =1.0e?

Figure 5. Information gain starting from the full set of non-mated
comparisons for the age, gender and race covariates

After subsetting the full set by race, the information gain
of next subsetting by either gender or age was individually
calculated. Figure 6 shows that splitting the racially homo-
geneous subsets next by gender yields a greater information
gain than splitting by age.

R = Biack False Matchi R = Black _ False Match_
Yes No Yes No
old 600 150,226 5 | Male 1,963 524,427
2 [Noune 3711 517.008 % | Female 4508 | 811406
Different 2.960 15,552,080 © | Different 800 1323481
Gain = 2.6e* Gain =1.4¢*
False Match False Match
R = White Yes No R = White Yes o
- Old 1340 245,538 5 | Male 1456 330,090
3:” Young 321 92915 E Female 818 209393
Different 921 737179 U | Different 308 536,169
Gain =8.2¢ Gain =1.1e*

Figure 6. Information gain starting from racially homogeneous
subsets of non-mated comparisons for age and gender

Figure 7 shows the full entropy based classification tree.
Figure 7 also shows the FMR at each stage of the tree. In
our sample, the FMR for subjects who identified as Black or
African American is similar to FMR for subjects who iden-
tified as White (2.7e~2 vs. 2.3e73, respectively). At the
next level of the tree, the FMR is highest for females who
identified as Black or African American (5.5¢~2), while
the lowest FMR 1is observed for males who identified as
Black or African American (3.7¢~3). Finally, for demo-
graphically homogeneous comparisons, FMR was highest
for males who identified as White and were similarly aged,
over 40 (9.0¢73), and the lowest FMR was for males who
identified as Black or African American and were similarly
aged, over 40 (3.5¢73).

Some of these error rate spreads, such as those for Black
or African American and White subjects, meet the EEOC

definition of fairness discussed in Section 2.3. However,
the error rates for other groups, such as the FMR rate for
all Females (3.0¢~2) and all Males (2.1e~3) do not meet
this particular definition of fairness (rates calculated from
Figure 5).
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Figure 7. Entropy based classification tree showing the different
false match rates across demographic groups. The worst, i.e. high-
est, false match rates per demographic subset are highlighted red.
The best false match rates are highlighted green. The number of
comparisons, i.e. the denominator in the false match rate calcu-
lation, is also shown for each node in the tree. Race (R), gender
(G), and age (A) demographic covariates are reported by Black or
African American (B) vs. White (W), male (M) vs. female (F),
and similarly aged old (O) vs. similarly aged young (Y), respec-
tively.

Our observation of highest FMR for older White males
and lowest FMR for older Black or African American
males was surprising in that it was not expected from prior
work [10] which showed positive shifts in the imposter dis-
tributions for Black males relative to White males. How-
ever, this prior work examined only younger individuals
(aged <40) whereas our population was more diverse in age
(Figure 3). Previous work showed that the absolute value
of continuous variables, such as age, can have a strong ef-
fect on biometric performance [17]. We therefore exam-
ined the effect of age, and consistency with prior work, by
examining separately the shifts in the imposter distribution
for different homogeneous groups. Figure 8§ resolved the
discrepancy showing that the imposter distributions shifted
higher for homogeneous groups of young (aged <40) indi-
viduals identifying as male and Black or African American
relative to groups of old (aged >40) individuals identifying
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as male and Black or African American. Surprisingly, this
effect was reversed in individuals identifying as male and
White, with the imposter distribution shifted higher in older
individuals compared to the younger homogeneous group,
consistent with the observed FMR.
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Figure 8. Distributions of the 99th percentile subject-specific non-
mated scores across specific homogeneous demographic cate-
gories. Black or African American (B), White (W), Male (M),
and Female (F) labels are shown along the y axis. Chart is faceted
by Young (Age <40) and Old (Age >= 40).

4. Conclusions

This work presents a framework for understanding Dif-
ferential Performance and Differential Outcome in face
recognition across different demographic groups. Critically,
it introduces the notion that there are different types of dif-
ferential measures. We show that oft-cited academic work
in this area mostly overlooks False Positive Differential,
a tendency for certain demographic groups to be falsely
matched. We examined False Positive Differential Perfor-
mance and Outcome in homogeneous groups broadly (same
age, same gender, same race) and within specific homoge-
neous groups (similarly aged and older, white, male, etc.).
Our outcomes are as follows. First, we show that homo-
geneity in a given population can have an aggregate two or-
der of magnitude ("400x) effect on FMR, and that this FMR
increase is driven primarily by homogeneous race ("25x)
and gender ("10x), with a more modest contribution of ho-
mogenous age ("1.3x). Second, we show that FMR is gener-
ally similar across specific homogeneous groups in our sam-
ple, varying at most 3x between the highest FMR, observed
for older males self-identifying as White, and the lowest
FMR, observed for older males self-identifying as Black or
African American. We highlight that some of these varia-
tions in error rates actually meet the U.S. Equal Employ-
ment Opportunity Commission definition of fairness, while
others do not. Finally, we show that False Positive Differ-
entials for the tested biometric algorithm showed a rever-
sal in its association with race. For younger individuals,

median 99th percentile subject-specific non-mated scores
and FMR were highest for females self-identifying as Black
or African American, but for older individuals, scores and
FMR were highest for males self-identifying as White. This
shows that False Positive Differentials have a complex rela-
tionship with specific demographic groups such that effects
are not strictly tied to one variable, such as race, but to an
interaction between, at least, race, gender, and age.

We hope these contributions, particularly the introduc-
tion of False Positive and False Negative Differential terms,
leads to a withdrawal of the ambiguous term “bias” from
public discourse when discussing demographic effects in
facial recognition. As outlined, this term is not descriptive
enough to properly describe the problem, and carries with
it certain social connotations. We also hope the notion that,
in this system, false positive error rates for specific demo-
graphic groups were generally similar, can contribute to the
ongoing conversations regarding the equitability of facial
recognition systems.

Much future work in this area is needed. First, this effect
needs to be explored using a variety of algorithms, datasets,
and populations. Our test population notably did not in-
clude statistically significant sample of subjects that self-
identified as Asian, or as Hispanic or Latino. Second, these
error rates and the concepts of False Positive and Negative
Differential Outcomes need to be explored more carefully
under a variety of different fairness models. We believe
ongoing work in the broader area of Artificial Intelligence
fairness will be helpful in this regard. Finally, it has re-
cently been shown that phenotypic measures offer a supe-
rior explanation of demographic effects in face recognition
[4]. Future modeling using continuous variables, such as
face morphology or skin reflectance, will likely provide a
more complete account False Positive Differentials.
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